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Safety-Critical Multi-Agent MCTS for Mixed
Traffic Coordination at Unsignalized Intersections
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Abstract—Decision making at unsignalized intersections
presents significant challenges for autonomous vehicles (AVs),
particularly in mixed traffic scenarios where both AVs and
human-driven vehicles (HDVs) must safely coordinate their
movements. This paper proposes a safety-critical multi-agent
Monte Carlo tree search (MCTS) framework that integrates
deterministic and probabilistic predictions to enable cooperative
decision making in complex intersection scenarios. The frame-
work incorporates three main innovations: 1) a safety assessment
mechanism that systematically handles AV-to-AV (V2V), AV-
to-HDV (V2H), and Vehicle-to-Road (V2R) interactions using
dynamic safety thresholds and spatiotemporal risk metrics, 2) an
adaptive HDV behavior awareness by combining the Intelligent
Driver Model (IDM) with probabilistic distributions, and 3)
a multi-objective reward function optimization approach that
balances safety, efficiency, and cooperation. Extensive simulations
demonstrate our framework’s efficacy and superior capability in
ensuring safe and efficient intersection navigation across the fully-
autonomous scenario (100% AVs) and challenging mixed traffic
scenario (50% AVs + 50% HDVs). Compared to benchmarks,
our method reduces trajectory deviations by up to 37.56% in the
fully-autonomous scenario and 62.43% in the mixed traffic sce-
nario, while maintaining significantly lower Post-Encroachment
Time (PET) violations (0% and 2.8%, respectively).

Index Terms—Autonomous vehicles, decision making, mixed
traffic, Monte Carlo tree search, risk assessment

I. INTRODUCTION

DECISION making at unsignalized intersections presents
significant challenges for autonomous vehicles (AVs) [1],

particularly in mixed traffic environments where both AVs and
human-driven vehicles (HDVs) must safely coordinate their
movements without traffic signal guidance [2]. The complexity
arises from the need to handle multiple types of critical
interactions simultaneously while ensuring both safety and
efficiency at intersections, a highly dynamic environment [3].
This challenge becomes more pronounced as the interaction
patterns among vehicles become more intricate, thus requir-
ing a comprehensive understanding of both deterministic AV
behaviors and uncertain HDV behaviors [4]. This work targets
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unsignalized intersections where traffic signals are impractical
due to cost, infrastructure, or geographical constraints. Such
intersections are widespread globally, particularly in rural or
developing areas, highlighting the need for infrastructure-light
algorithmic coordination solutions.

While many unsignalized intersections operate with ex-
plicit priority rules (e.g., stop signs and yield signs), several
scenarios exist where such rules are absent, ambiguous, or
insufficient for optimal traffic flow. These include unmarked
rural intersections, temporary construction zones, low-volume
residential areas, parking lots, and emergency situations [5].
In developing regions, intersections with unclear or poorly
maintained signage are common. Even at intersections with
established priority rules, human drivers’ inconsistent interpre-
tation creates ambiguity that AVs must safely navigate [6]. As
vehicle autonomy advances, interest grows in cooperative in-
tersection management approaches that may replace traditional
priority rules with more efficient negotiation-based protocols,
particularly with increasing AV penetration rates [7]. Our focus
on unsignalized intersections without rigid priority assign-
ments provides a challenging testing ground for autonomous
decision-making algorithms, requiring vehicles to negotiate
passage dynamically through implicit communication and be-
havior prediction rather than relying on predefined rules, thus
ensuring robustness across diverse real-world scenarios.

Traditional approaches to intersection management often
rely on rule-based methods, which attempt to generate conflict-
free passage sequences through preset regulations [8]. Al-
though computationally efficient, these methods struggle to
capture the complex and diverse decision-making behaviors of
human drivers [9]. The First In, First Out strategies [10] ensure
safety by allowing only one vehicle to pass at a time, but sig-
nificantly reduce the traffic efficiency [11]. More sophisticated
rule-based approaches incorporating virtual rotation projection
and conflict-free passage sequence trees have been proposed,
but their effectiveness diminishes in scenarios involving HDVs
with varying abilities and driving styles [12].

Recent advances in machine learning have revolutionized
the approach to autonomous intersection management [13],
[14]. Deep learning techniques, particularly those incorporat-
ing recurrent neural networks and graph neural networks, have
demonstrated remarkable success in modeling the complex
interdependencies between vehicles at intersections. Deep re-
inforcement learning (DRL) [15], [16] has shown particular
promise in handling mixed traffic scenarios, with approaches
such as multi-agent deep deterministic policy gradient [17]
achieving notable improvements in safety and efficiency. How-
ever, these learning-based methods face challenges such as
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Fig. 1: Overview of the safety-critical decision-making framework based on MCTS. The framework includes: (a) interaction
modeling among AVs, HDVs, and roads with uncertainty; (b) safety assessment based on V2V, V2R, and V2H constraints;
(c) multi-objective reward composition incorporating safety, comfort, cooperation, and efficiency; and (d) safety-critical MCTS
rollout with node filtering and backpropagation. Optimal policies are derived under risk-aware constraints via tree search.

limited interpretability, a reliance on extensive training data,
and difficulties in ensuring consistent safety guarantees in
novel situations [18], [19]. Recent advancements include
decision-making models with distributional reinforcement
learning for perceptual uncertainty [20] and spatiotemporal-
restricted A∗ algorithms for lane-free intersection coordina-
tion [21], [22]. However, these approaches typically address
specific aspects of intersection management rather than provid-
ing comprehensive frameworks for mixed traffic coordination.
Moreover, deploying these methods in real world remains
a challenge, as ensuring consistent and robust performance
across diverse traffic conditions is inherently difficult.

Game-theoretic methods [23]–[25] have emerged as an
alternative paradigm for modeling strategic interactions among
vehicles at unsignalized intersections [26]. Approaches such as
Nash equilibrium and Stackelberg games [27] can effectively
capture the competitive and cooperative behaviors between
vehicles. However, these methods often rely on assumptions of
perfect rationality and complete information, which rarely hold
in real-world scenarios where HDVs exhibit varying levels of
uncertainty and inconsistency. Additionally, the challenge of
selecting among multiple Nash equilibria [28] can undermine
cooperative consistency and lead to potential safety violations,
especially in dynamic mixed traffic environments where rapid
decision-making is critical [29].

Monte Carlo Tree Search (MCTS) [30] has emerged as a
promising approach by marrying the learning-based and game-
theoretic methods [31]. Unlike traditional DRL which requires
extensive offline training, MCTS can efficiently explore the
action space through online planning [32], [33]. The algo-
rithm’s inherent ability to balance exploration and exploitation

makes it suitable for handling the uncertainties in mixed traffic
environments [34]. However, current MCTS implementations
such as [35], [36] often fall short in addressing comprehensive
safety considerations and face significant scalability challenges
in multi-agent scenarios.

This paper introduces a safety-critical multi-agent MCTS
framework for coordinating mixed traffic at unsignalized in-
tersections. The main contributions are summarized as follows:

• We propose a safety-critical multi-agent MCTS frame-
work that integrates deterministic and probabilistic ve-
hicle behavior predictions, enabling cooperative decision
making among AVs and HDVs at unsignalized intersec-
tions.

• We develop a safety assessment mechanism that system-
atically handles three critical interaction types, AV-to-
AV (V2V) [37], AV-to-HDV (V2H) [38] and Vehicle-
to-Road (V2R) [39], by using dynamic safety thresholds
and spatiotemporal risk metrics, providing comprehensive
safety guarantees.

• We design a multi-objective reward function optimization
approach that balances driving safety, efficiency, and co-
operation, enabling efficient intersection navigation under
safety constraints.

• We adopt an adaptive human driving behavior awareness
framework that combines the deterministic Intelligent
Driver Model (IDM) with probabilistic distributions to
effectively capture human driving uncertainties, ensuring
robot decision making in mixed traffic environments.

The rest of this paper is organized as follows: Section II
describes the overview of proposed framework, Section III
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and IV illustrates the methodology, Section V presents simu-
lation results, and Section VI concludes the paper.

II. SAFETY-CRITICAL DECISION MAKING FRAMEWORK
OVERVIEW

We consider the unsignalized intersection scenario where
AVs need to coordinate with other vehicles (a mix of AVs and
HDVs) without traffic signal guidance, with consideration of
both deterministic autonomous behaviors and uncertain human
driving patterns. The core challenge lies in handling three
critical interaction types: V2V, V2H, and V2R interactions.

The proposed safety-critical decision-making framework
consists of four main components, as illustrated in Fig. 1.
First, we formulate the unsignalized intersection problem as a
multi-agent Markov Decision Process (MDP), which involves
defining the state and action spaces, safety constraints, and
system dynamics model (Sec. III-A). Then, we develop a
safety-critical decision-making mechanism by considering the
safety interactions, establishing dynamic safety thresholds, and
integrating HDVs prediction with risk assessment (Sec. III-B).
Based on these foundations, we propose a safety-critical multi-
agent MCTS framework that incorporates node structure and
policy space design (Sec. IV-A). Additionally, we design a
comprehensive reward function that combines multi-objective
reward considerations—including V2V, V2R, and V2H safety
aspects—as well as safety and dynamic constraints, leading to
a safety-critical optimization formulation (Sec. IV-C). The pro-
posed framework systematically addresses the challenges of
safety-critical decision-making at unsignalized intersections,
particularly focusing on the complex interactions between AVs
and HDVs. The detailed design of each component and their
interactions will be presented in the following sections.

III. THE PROPOSED SYSTEM FORMULATION

A. Multi-Agent MDP Formulation

We propose a centralized decision-making framework for
multiple AVs at unsignalized intersections to better coordinate
the behaviors of multiple AVs and achieve system-level opti-
mal performance. The problem involving N AVs and M HDVs
is formulated as a multi-agent MDP: ⟨S,A, T ,R, γ⟩, where S
is the state space, A is the action space, T : S×A×S → [0, 1]
is the state transition function, R : S × A → R defines the
reward function, and γ ∈ (0, 1] is the discount factor.

For the i-th vehicle, the state vector si consists of its
position coordinates (xi, yi), velocity vi, and heading angle θi.
The control input ai includes the acceleration command acci
and steering rate θ̇i. Then the joint state and action spaces are

S=
N+M∏
i=1

{si=[xi, yi, vi, θi]
⊤∈ R4 | vi∈ [0, vmax], |θi|≤π},

Ai = {ai = [acci, θ̇i]
⊤∈R2 | |acci| ≤ amax, |θ̇i| ≤ θ̇max},

where vmax is maximum velocity, amax is maximum acceler-
ation/deceleration, and θ̇max is maximum steering rate.

The intersection navigation decisions must meet basic safety
constraints on state changes and inter-vehicle distances:

Ssafe = {s ∈ S | di,j ≥ dsafe,∀i, j ∈ V ∪H} ,
di,j = min

pi,pj∈P(si)
∥pi − pj∥2, (1)

where s = [s1, s2, ..., sN+M ], di,j is the minimum distance
between the i-th and j-th vehicles, dsafe is the minimum safe
distance, P(si) is the four vertices of the i-th vehicle, V is
the set of AVs and H is the set of HDVs.

Let st = [s1,t, s2,t, ..., sN+M,t] be the joint state of all
vehicles at time step t, with si,t = [xi,t, yi,t, vi,t, θi,t]

⊤ being
the state vector of vehicle i ∈ V ∪ H. The intersection
navigation decisions must also satisfy constraints over T :

st+1∈Ssafe, ∀t ∈ [0, T ], |vi|≤vmax, dv2r(si) ≥ dmin, (2)

where dv2r(si) is the minimum distance to road boundaries,
with the minimum allowable value dmin.

The AV dynamics are governed by the kinematic model:

st+1 = Φ(st, πt), (3)

with the transition function Φ(st, πt) = {fi(si,t, πi,t)}Ni=1, and

fi(si,t, πi,t) =


xi,t + vi,t cos(θi,t)∆t
yi,t + vi,t sin(θi,t)∆t

sat[0,vmax](vi,t + acci,t∆t)

wrap[−π,π](θi,t + θ̇i,t∆t)

 , (4)

where πt = [π1,t, π2,t, · · · , πN,t], with πi,t = (acci, θ̇i),
contains the control inputs for all AVs at time t. ∆t is the time
step, sat[0,vmax](·) keeps vi,t within [0, vmax], and wrap[−π,π](·)
handles angle continuity by wrapping θ to the interval [−π, π].

While AV states are updated by (3), HDV behavior involves
inherent uncertainties that grow over time, which must be
properly characterized for reliable safety assessment.

B. Safety Assessment

To ensure safe navigation at unsignalized intersections, we
develop a safety assessment framework that improves upon
existing approaches through three key innovations: 1) Com-
prehensive analysis across V2V, V2H, and V2R interactions;
2) Dynamic context-aware safety thresholds that adapt to
changing traffic conditions; and 3) Integration of both instan-
taneous and predictive risk metrics with explicit modeling of
human driving uncertainties. This enables more realistic safety
evaluations in mixed traffic environments.

1) V2R Safety Assessment: This assessment focuses on
spatial constraints by partitioning the environment into the
intersection area Ωint and its approach area Ωapp. We define
a Cartesian coordinate system centered at the intersection:

Ωint = {s ∈ S | |x| ≤ REX ∧ |y| ≤ REX},
Ωapp = {s ∈ S | |x| ≤ 2REX ∨ |y| ≤ 2REX},

(5)

where REX denotes the half-length of the intersection area. ∧
and ∨ represent the logical AND and OR operations, respec-
tively. The approach area Ωapp extends beyond Ωint to facilitate
early risk assessment as vehicles approach the intersection.
The safety level is evaluated through the minimum distance
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Fig. 2: Illustration of the intersection regions. The origin is set
at the intersection center. The red dashed square denotes the
intersection area Ωint. The approach area Ωapp extends outward
along the roads. The minimum vehicle-to-road distance (dv2r)
and the safe distance threshold (dsafe) are also shown.

to road boundaries dv2r(si) and its corresponding penalty
function ϕv2r(d), defined as

dv2r(si) = min
p∈P(si)

distance(p, ∂Ωint ∪ ∂Ωapp),

ϕv2r(d) =


−∞, d ≤ dmin

−β(dmin/d)
2, dmin < d ≤ dsafe

0, d > dsafe

,
(6)

where the symbol ∂ denotes the area boundary, dsafe is the safe
threshold, and β is a scaling factor, as illustrated in Fig. 2.

2) V2V and V2H Safety Assessment: The safety assessment
incorporates both temporal and instantaneous risk evaluations.
It utilizes an adaptive safety threshold that accounts for dy-
namic interaction conditions, defined as

dsafe = max{dbase, κv|∆vij |} ·
3∏

k=1

αk(si, sj) (7)

where dbase is the minimum safe base distance, κv is a scaling
factor, and ∆vij = vi − vj is the relative velocity between
vehicles i and j. The first term ensures that safety distance
increases with |∆vij |, consistent with safe driving practices.
The adjustment factors {αk}3k=1 then modify this baseline
considering specific interaction characteristics as follows:

αk(si, sj) = 1 + βk · fk(si, sj)/gk, k = 1, 2,

f1(si, sj) = |∆vij |, g1 = vref,

f2(si, sj) = |∆θij |, g2 = π,

α3(si, sj) = 1 + ⊮Ωapp(si, sj) + ⊮Ωint(si, sj),

(8)

where the parameter βk controlling the influence of the relative
speed (k = 1) and relative heading angle (k = 2) on the safety
distance, f1 captures the velocity-dependent risk with g1 = vref
(a reference velocity) serving as the normalization factor, and
f2 accounts for heading angle difference ∆θij = θi − θj that
is normalized to [0, 1] via g2 = π. α3 is the spatial risk factor
to increase the safety margins in these conflict zones, where
the indicator functions ⊮Ωapp and ⊮Ωint are 1 when vehicles
are in the zones Ωapp or Ωint, respectively.

(a) (b)
Fig. 3: Safety-critical risk assessment. (a) Distance-based risk.
(b) Mixed traffic interaction scenario at intersection.

Using (1) and (7), we define the instantaneous risk function

r(si, sj) = exp

(
−di,j,min

dsafe

)
·
(
1 + λv

∥∆vij∥
vmax

)
, (9)

where di,j,min is the minimum distance between vehicles i and
j and λv is a scaling factor. The exponential term captures
rising risk as distance nears the safety threshold, while the
velocity term reflects added risk from higher relative speeds.

We further formulate the following temporal risk function
concerning near-term safety over a prediction horizon Tp:

RTp(si, sj) =
1

Tp

Tp∑
t=1

1

1 + t
· ρ(di,j , dsafe), (10)

where 1/(1+t) is used to prioritize immediate risks by assign-
ing higher weights to near-term predictions. This discounting
reflects the greater certainty and importance of imminent
events compared to those further in the future. The function
ρ(·) evaluates the proximity to safety boundaries according to
the current states si and sj and is defined as

ρ(di,j , dsafe) =

{
0, di,j ≥ dsafe

(1− di,j

dsafe
)2, otherwise

. (11)

The distance-based risk function ρ(di,j , dsafe) and a typical
mixed traffic interaction scenario at intersection are illustrated
in Fig. 3(a) and Fig. 3(b), respectively. This piecewise function
sets risk to zero at safe distances and applies a quadratic
penalty as vehicles breach the safety threshold, capturing the
sharply rising danger at close range.

The safety assessment methodology differs between V2V
and V2H interactions based on their inherent characteristics.
For V2V interactions, vehicle states evolve deterministically
according to control inputs and the dynamic model (4). Us-
ing (9) and (10), the overall safety level of V2V interaction is
quantified by the risk assessment function

Qv2v
risk(si, sj) = wv2v

1 r(si, sj) +wv2v
2 RTp(si, sj), i, j ∈ V, (12)

where wv2v
1 and wv2v

2 are the given weights that balance im-
mediate and predictive risk components. This approach offers
several advantages over existing methods: 1) The dynamic
safety thresholds adapt to specific interaction contexts rather
than using fixed distances, 2) the combination of instantaneous
and predictive risk enables both reactive and proactive safety
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Fig. 4: Driving style classification based on preference distri-
bution among safety, efficiency, and comfort. The parameter
ηh distinguishes conservative (ηh < 0.3), moderate (0.3 ≤
ηh ≤ 0.7), and aggressive (ηh > 0.7) driving behaviors. Each
point represents a possible driving behavior where the three
preference values sum to 100%.

evaluations, and 3) the incorporation of spatial risk factors
accounts for location-specific variations at intersections.

The V2H interactions require explicit consideration of hu-
man behavioral uncertainties. To better capture the diversity
in human driving behaviors, we classify HDVs into different
driving styles based on observable driving characteristics from
the the Next Generation Simulation (NGSIM) datasets [40].
Specifically, we define a driving style parameter ηh ∈ [0, 1]
for each HDV h ∈ H, where values closer to 0 indicate more
conservative driving (prioritizing safety), and values closer to
1 indicate more aggressive driving (prioritizing efficiency),
as illustrated in Fig. 4. The style parameter affects both the
deterministic predictions and the uncertainty estimates.

For HDVs, we use the style-aware probabilistic prediction

P (ŝh|sh, ηh) = N (fIDM(sh, ηh),Σh(t, ηh)), h ∈ H, (13)

where sh represents the current HDV state, ŝh denotes its
predicted future state, and fIDM(sh, ηh) captures the nominal
human driving behavior adjusted for the specific driving style.
The IDM parameters are adapted based on the driving style:

amax(ηh) = amax,base · (1 + αa · ηh),
Theadway(ηh) = Theadway,base · (1− αT · ηh),

dsafe(ηh) = dsafe,base · (1− αd · ηh),
(14)

where amax,base, Theadway,base, and dsafe,base are the baseline IDM
parameters, while αa, αT , and αd are scaling factors that
control how driving style affects each parameter. Aggressive
drivers (higher ηh) tend to have higher maximum acceleration,
shorter time headway, and reduced safety distances. Σh(t, ηh)
is a time-varying covariance matrix capturing the prediction
uncertainty and given by

Σh(t, ηh) =


Σxx 0 Σxv 0
0 Σyy 0 Σyθ

Σxv 0 Σvv 0
0 Σyθ 0 Σθθ

 , (15)

where Σxx = σ2
x(ηh)t+ ϵ2x(ηh)t

2, Σyy = σ2
y(ηh)t+ ϵ2y(ηh)t

2,
Σvv = σ2

v(ηh), Σθθ = σ2
θ(ηh), Σxv = ρxvσx(ηh)σv(ηh)t, and

Fig. 5: Sensitivity analysis of correlation parameters in the
HDV prediction model. (a) Impact of ρxv on collision proba-
bility. (b) Combined effect of correlation parameters ρxv and
ρyθ on collision probability in intersection turning.

Σyθ = ρyθσy(ηh)σθ(ηh)t. The uncertainty parameters are also
adjusted based on driving style:

σx(ηh)=σx,base(1+βxηh), σy(ηh)=σy,base(1+βyηh),

σv(ηh)=σv,base(1+βvηh), σθ(ηh)=σθ,base(1+βθηh),
(16)

where the baseline uncertainty parameters σx,base, σy,base,
σv,base, and σθ,base are scaled according to driving style, with β
parameters controlling the effect magnitude; aggressive drivers
typically have higher uncertainty, shown by larger β.

The covariance matrix Σh(t, ηh) is designed to capture key
correlations observed in human driving behavior. Specifically,
we model two critical correlations: 1) the correlation between
longitudinal position and velocity (ρxv), and 2) the correlation
between lateral position and heading angle (ρyθ). These cor-
relations reflect the physical coupling in vehicle dynamics -
velocity directly influences position change over time, while
heading angle determines the direction of lateral movement.

To validate the sensitivity of our model to these correlation
parameters, we conducted a systematic analysis varying ρxv
and ρyθ within the range [−1, 1] at intervals of 0.2. Fig. 5
shows the impact on collision probability estimation with
different correlation values for two representative driving
scenarios: longitudinal movement and intersection turning.
The analysis reveals that ρxv has the most significant im-
pact in longitudinal movement scenarios, with higher positive
correlations (0.3-0.5) providing the most accurate predictions
compared to the NGSIM dataset. In turning scenarios at in-
tersections, as shown in Fig. 5(b), both correlations contribute
significantly to accurate risk assessment, with their combined
effect creating a clear optimal region in the parameter space.

Based on this sensitivity analysis and validation against the
NGSIM datasets [41], we selected ρxv = 0.3 and ρyθ = 0.3 as
our default correlation parameters, as they provide a balanced
representation across different driving scenarios while match-
ing the observed correlations in human driving patterns. These
values also align with previous findings in driver behavior
modeling [42], [43], which reported correlation coefficients
in similar ranges for natural driving tasks.

The zero elements in the covariance matrix Σh(t, ηh) in (15)
reflect our modeling assumption that certain state variables
have negligible direct correlation (e.g., lateral position and
longitudinal velocity). This simplification is supported by ve-
hicle dynamics principles and empirical observations in human
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Fig. 6: Visualization of HDV’s trajectory evolution uncertainty.

driving data, where such cross-correlations are typically weak
compared to the primary correlations we model [44].

To obtain physically feasible prediction of HDVs, we also
bound HDVs’ reachable state space as the set

Sth = {ŝh ∈ R4 |∥ph − ph(t)∥ ≤ (vmax + σv)t,

|vh| ≤ vmax + 2σv, |θh| ≤ π},
(17)

where σv reflects the behavioral uncertainty. The evolution of
the prediction uncertainty is visualized in Fig. 6.

We quantify the collision probability of V2H using

Cih =

∫
ŝh∈St

h
(ηh)

ψ(ŝi, ŝh) · N (fIDM(sh, ηh),Σh(t, ηh))dŝh, (18)

where ψ(ŝi, ŝh) = I(d(ŝi, ŝh) < dsafe) is the collision indi-
cator function comparing AV’s predicted state ŝi and HDV’s
future states ŝh against a style-dependent safety threshold dsafe.
ŝi is predicted using a constant acceleration model, while ŝh
follows (13) with the driving style ηh.

By using (9), (10), (11) and (18), the overall safety level is
quantified by the risk assessment function

Qv2h
risk(si, sh) = wv2h

1 r(si, ŝh) + wv2h
2 RTp

(si, sh) + wv2h
3 Cih,

i ∈ V, h ∈ H, ŝh ∈ Sth, (19)

where wv2h
k , k ∈ [1, 3], are given weights. The first term evalu-

ates instantaneous risk with predicted HDV states, the second
term considers temporal risk evolution, and the third term
means collision probability under prediction uncertainties.

This comprehensive safety assessment framework offers
several advantages over existing approaches: 1) It handles
both deterministic and probabilistic interactions through a
unified mathematical formulation; 2) It quantifies safety in
terms of both immediate risk and future collision probability,
providing a more complete risk assessment; 3) It explicitly
accounts for human driving uncertainty through principled
probabilistic models rather than simplistic assumptions; and 4)
It seamlessly integrates with the decision-making framework
to enable safety-critical planning. These characteristics make
our approach particularly suitable for complex mixed traffic
scenarios at unsignalized intersections, where existing methods
often fail to balance safety and efficiency due to their limited
consideration of interaction complexity and uncertainty.

Algorithm 1 Safety-Critical Multi-Agent MCTS Algorithm

Input: Initial state s0, iteration limit K, and dmax
1: Initialize root node n0 with state s0, Nn0

← 0, Qn0
← 0

2: for iteration k = 1 to K do
3: n← n0 ▷ Current node in tree
4: while dn < dmax and ξn = o” do ▷ Safe node check
5: if Nn = 0 then ▷ Unvisited node
6: ∆← Rollout(n)
7: Backpropagate(n,∆)
8: break
9: else if Cn = ∅ then ▷ Leaf node

10: Expand(n) ▷ Generate child nodes
11: for nchild ∈ Cn do
12: Evaluate safety using Qv2v

risk, Qv2h
risk, dv2r

13: if Qv2v
risk ≤ Qv2v

th and
14: Qv2h

risk ≤ Qv2h
th and dv2r ≥ dmin then

15: ξnchild ← “o” ▷ Mark as safe
16: else
17: ξnchild ← “x” ▷ Mark as unsafe
18: end if
19: end for
20: ∆← Rollout(n)
21: Backpropagate(n,∆)
22: break
23: else
24: n← SelectChild(n) ▷ Using UCB in (25)
25: end if
26: end while
27: end for
28: return ExtractPolicy(n0)

IV. THE MULTI-AGENT MCTS FRAMEWORK

The proposed safety-critical multi-agent MCTS framework
is summarized in Algorithm 1, whose design is detailed in
Sections IV-A, IV-B, and IV-C. Its computational complexity
is also analyzed in Section IV-D.

A. Safety-Critical Tree Search Design

1) Node Structure and Policy Space: We propose a struc-
tured tree search framework where the risk assessment func-
tions in (12) and (19) are used to evaluate the safety of each
node (state-action pair) and prune unsafe nodes that exceed
predefined safety thresholds (Qv2v

th for V2V interactions and
Qv2h

th for V2H interactions). This ensures the generated policies
optimize objectives while maintaining safety.

The joint policy space Πjoint =
⊗N+M

i=1 Pi represents the
Cartesian product of the basic policy sets Pi of all N +M
vehicles. For each vehicle, we define a discrete action space:

Pi=

{[
acci
θ̇i

]∣∣∣∣ acci∈{−amax,−amed, 0, amed, amax}
θ̇i∈{−θ̇max,−θ̇med, 0, θ̇med, θ̇max}

}
, (20)

with a medium steering rate θ̇med for finer control precision.
Let T be the search tree whose node n ∈ T defined as:

n = (dn, pn, Cn, Nn, Qn, πn, ξn) ∈
N× N× 2N × N× R×Πjoint × {“o”, “x”}.

(21)
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Fig. 7: Illustration of the safety-critical MCTS framework.
Each node maintains Nn, Qn, and UCB scores, with unsafe
nodes (orange) eliminated during safety validation. The green
path shows the backpropagation.

The status “o” indicates safe while “x” indicates unsafe.
Each node maintains essential information including depth dn,
parent node pn, child nodes set Cn, visit count Nn, value
estimates Qn, policy πn, and safety status ξn. The safety status
is determined through a comprehensive evaluation:

ξn =


“o”, if Qv2v

risk ≤ Qv2v
th and

Qv2h
risk ≤ Qv2h

th and dv2r ≥ dmin

“x”, otherwise
, (22)

where Qv2v
risk is the vehicle-to-vehicle risk measure, Qv2v

th is its
threshold, Qv2h

risk is the vehicle-to-human risk measure, Qv2h
th is

its threshold, dv2r is the distance to road boundary, and dmin

is the minimum safe distance.
The safety-critical multi-agent MCTS operates over the

discretized action space Πjoint using depth-first search with
safety checks at each node. It comprises four stages: selection,
transition, rollout, and backpropagation (Fig. 7).

2) Safety-Critical Tree Search Process: Let nt be the node
at time t. The search process evaluates nodes recursively based
on both their potential value and safety constraints:

Search(nt)=


Expand(nt)∪Rollout(nt), if new&safe
Search(UCB(nt)), if visited
Terminate, if unsafe or max depth

(23)

During expansion, we generate child nodes by applying all
possible actions from Πjoint. The safety evaluation follows:

SafetyCheck(n) = (∧i,j∈V,i̸=jV2V(si, sj))

∧ (∧i∈V,h∈HV2H(si, sh)) ∧ (∧i∈VV2R(si))
(24)

The node selection balances exploration and exploitation
using

UCB(n) =

{
Qn

Nn
+ cexp

√
(lnNn0

)/Nn, if Nn > 0

+∞, if Nn = 0
(25)

where cexp ≥ 1
2
√
2
∆max with ∆max = maxn,n′∈T |Qn −Qn′ |

ensuring sufficient exploration as shown in Fig. 7. After node
selection, the system states are evolved following (4).

3) Rollout Strategy and Value Backpropagation: For unvis-
ited nodes, we employ a hybrid rollout strategy combining
model-based prediction and random sampling:

πrollout = απmodel + (1− α)πrandom,

πmodel = argmax
π∈Πsafe

Qpred(s, π), πrandom ∼ U(Πsafe),
(26)

where α is a mixing parameter, Πsafe is the set of safe
actions, Qpred is a learned value predictor, s is the current
state, πrollout is the final rollout policy, πmodel is the model-
based policy component, πrandom is randomly sampled from a
uniform distribution U over the safe action space, and Πsafe is
the set of safe actions.

The rollout estimates node values via forward simulation:

Pn = {πk}lnk=1, πk = πpln−k(n),

Pn,ext = Pn ∪ {πk}dmax
k=ln+1, πk ∼ U(Πjoint),

Qeval(n) =

dmax−1∑
t=0

γtrR(st, πt),
(27)

where Pn is the action sequence from root to node n, ln is
the depth of node n, pk(n) is the k-th parent of node n, dmax
is the maximum simulation depth, γr ∈ (0, 1) is the reward-
specific discount factor prioritizing immediate safety, R is the
reward function, and st and πt are the state and action at time
t.

The value backpropagation follows

Nn ← Nn+1, Qn ← Qn+
1

Nβdec
n

[Qeval(neval)−Qn], (28)

where Nn is the visit count of node n, Qn is the value estimate
of node n, neval is the evaluated leaf node, and βdec controls
the learning rate decay of value updates.

B. Multi-Objective Reward Design

The multi-objective reward function is designed to address
three key aspects of autonomous driving at unsignalized
intersections: safety in various interaction scenarios, motion
efficiency, and driving comfort.

1) Safety Component: The safety component Qi
safety is

defined as

Qi
safety=wv2vQ

i
v2v + wv2rQ

i
v2r + wv2hQ

i
v2h, (29)

with Qi
v2v =

∑
j∈V\{i}(ϕv2v(di,j ,∆vij ,∆θ) +

λTRTp
(si, sj)), Qi

v2r = ϕv2r(dv2r(si)), and Qi
v2h =∑

h∈H(ϕv2h(di,h,∆vih,∆θ, ξ) + λTRTp
(si, sh) + λcCih),

where ξ ∈ Ω denotes the scenario type, wv2v, wv2r, and wv2h
are weighting factors determining the relative importance
of different safety components: wv2v emphasizes V2V
interactions, wv2r reflects V2R safety measures, and wv2h
prioritizes V2H considerations. These weights can be
tuned based on specific driving scenarios, such as urban
environments or highways.

The V2V safety penalty function ϕv2v(di,j ,∆vij ,∆θ) is
defined as

ϕv2v(·) =

{
−1, di,j ≤ dsafe

0, otherwise
. (30)
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The V2H safety penalty function ϕv2h(di,h,∆vih,∆θ, ξ) is
defined as

ϕv2h(·)=


−µsψ1(df ,∆vih,∆θ), di,h ≤ dth
−µsψ2(df ,∆vih,∆θ), dth < di,h ≤ dsafe

0, di,h > dsafe

where ψ1(df ,∆vih,∆θ) = κ1 + κ2df + κ3∆vih + κ4∆θ and
ψ2(df ,∆vih,∆θ) = df (1 + η1∆vih/vref + η2∆θ/π) are the
penalty functions for different distance ranges, df = (dsafe −
di,h)/(dsafe − dth) is the distance factor, dth = 0.5dsafe is the
intermediate threshold, and µs(ξ) adapts to different scenarios.

2) Efficiency Component: The efficiency component Qi
eff

evaluates motion quality through velocity tracking (Qi
vel),

acceleration smoothness (Qi
acc), and reference path following

(Qi
ref) defined as

Qi
acc(ai)=−wacc(acci − aides)

2,

Qi
ref(pi)=−wref∥posi − piref∥2,

Qi
vel(vi)=


0, |vi − vides| ≤ vtol

−αv(vi − vides − vtol), vi − vides > vtol

−βv|vi − vides|, otherwise
,

where acci, vi, and posi are the current acceleration, velocity,
and position, respectively. aides, v

i
des, and piref are the desired

acceleration, velocity, and reference position, respectively. vtol
is the velocity tolerance threshold. wvel, wacc, and wref are
weight parameters. αv and βv are velocity deviation penalties
for overspeeding and underspeeding, respectively.

3) Comfort and Cooperation Components: The comfort
evaluation considers both longitudinal and lateral dynamics:

Qi
comfort = −wjerk|ȧi(st)|2 − wyaw|θ̈i(st)|2, (31)

where wjerk and wyaw are user-specified weights, ȧi is the jerk
(rate of acceleration change), and θ̈i is the yaw acceleration
of vehicle i. The cooperation component captures interactions
with other vehicles in both sets V and H:

Qother
i =

∑
j∈(V∪H)\{i}

wij(Q
j
safety +Qj

eff), (32)

where wij represents the weight between vehicles i and j.
To ensure fairness and prevent excessive yielding, we intro-

duce a dynamic cooperation coefficient for AV i:

λi(t) = λbase · exp(−αwait · T i
wait(t)), (33)

where λbase is the base cooperation coefficient, αwait is a
waiting time penalty factor, and T i

wait(t) represents the accu-
mulated waiting time of AV i at time t defined as T i

wait(t) =∑t
τ=0 I(vi(τ) < vthres), where I(·) is an indicator function

that equals 1 when the velocity of AV i falls below a threshold
vthres, indicating it is waiting or slowed down. The exponential
decay form follows established principles in utility-based deci-
sion making [45], where agents exhibit diminishing sensitivity
to accumulated delay. This aligns with behavioral economic
models such as prospect theory, in which the subjective cost of
waiting increases sub-linearly, leading to reduced willingness
to cooperate as waiting time grows.

This dynamic cooperation mechanism ensures that AVs
that have been waiting longer will gradually reduce their
cooperation level, prioritizing their own passage through the
intersection. This prevents situations where certain AVs might
be persistently excluded from entering the intersection due to
excessive cooperation.

To balance safety, efficiency, comfort, and cooperation in
the decision-making process, the final reward function for AV
i is defined as

Ri(st, π(st)) =
Qself

i (st, π(st)) + λiQ
other
i (st, π(st))

1 + λi(N − 1)
, (34)

where Qself
i = w1Q

i
safety +w2Q

i
eff +w3Q

i
comfort, with the given

weights w1, w2, and w3. The denominator 1 + λi(N − 1)
ensures that the cooperative term Qother

i is properly scaled
relative to the individual term Qself

i regardless of the number
of AVs N .

The total reward of all AVs over horizon T is defined as

Rtotal =

T−1∑
t=0

γtr
∑
i∈V
Ri(st, π(st)), (35)

where γr ∈ (0, 1) is the reward-specific discount factor that
prioritizes immediate rewards over future ones

While multi-objective reward functions are common in
autonomous driving literature, our proposed design introduces
several distinctive features specifically tailored for mixed
traffic coordination at unsignalized intersections. First, unlike
standard approaches that typically focus on individual vehicle
optimization, our formulation explicitly incorporates inter-
vehicle cooperation through the term Qother

i , enabling system-
level coordination. Second, we introduce a novel normalization
mechanism 1 + λi(N − 1) that ensures consistent perfor-
mance regardless of the number of vehicles, addressing the
limitation in existing cooperative reward designs. Third, our
hierarchical decomposition of safety components (Qi

v2v, Qi
v2r,

and Qi
v2h) with scenario-adaptive penalties (µs) provides fine-

grained control over different risk sources, rather than using a
monolithic safety term. Fourth, our efficiency component uses
an asymmetric penalty structure that differentiates between
overspeeding and underspeeding, reflecting the different risk
profiles of these behaviors in intersection scenarios. These
innovations collectively enable more nuanced and effective
decision-making in complex intersection environments com-
pared to standard reward formulations.

C. From Reward to Optimal Policy

The comprehensive reward function guides the search for
optimal policies. The global optimization objective can be
formulated as

π∗ := argmax
π∈Πjoint

E
[ T−1∑

t=0

γtr
∑
i∈V
Ri(st, π(st)) | π

]
(36)
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subject to the following constraints:

Safety Constraints:
Qv2v

risk(si, sj) ≤ Qv2v
th , ∀i, j ∈ V (V2V)

Qv2h
risk(si, sh) ≤ Qv2h

th , ∀i ∈ V, h ∈ H (V2H)
dv2r(si) ≥ dmin, ∀i ∈ V (V2R)

Dynamic Constraints:
vi ∈ [0, vmax], ∀i ∈ V (Velocity)
|acci| ≤ amax, ∀i ∈ V (Acceleration)

|θ̇i| ≤ θ̇max, ∀i ∈ V (Steering)

The safety constraints incorporate risk metrics Qv2v
risk(si, sj)

for V2V and Qv2h
risk(si, sh) for V2H interactions, which are

computed based on instantaneous risk (9), temporal risk (10),
risk boundary condition (11), and collision probability (18).
The separate thresholds Qv2v

th and Qv2h
th are designed to handle

different uncertainty levels for V2V and V2H interactions.
Our reward-based optimization differs from standard meth-

ods by explicitly incorporating safety constraints alongside
a structured reward function. Unlike traditional approaches
that rely solely on reward penalties—often resulting in ei-
ther conservative or risky behavior depending on tuning—our
method enforces hard safety constraints, ensuring safety while
optimizing performance within the admissible action space.
This separation enables more aggressive pursuit of efficiency
and comfort without compromising safety. Furthermore, our
cooperative reward normalization ensures consistent optimiza-
tion across varying numbers of agents, addressing a common
limitation in multi-agent formulations where cooperation lev-
els depend on agent count.

To solve this optimization problem through MCTS, at
each tree node, the local policy selection is determined by
maximizing the expected cumulative reward:

π∗(s) := argmax
π∈Πsafe

E
[ dmax∑

t=0

γtrRi(st, π(st)) | s0 = s
]
. (37)

The node values Qn maintained by the MCTS algorithm
represent the estimated cumulative reward:

Qn ≈
dmax∑
t=0

γtrRi(st, πt). (38)

This estimation is refined through backpropagation:

Qn ← (1− αn)Qn + αn

[
Ri(sn, πn) + γr max

n′∈Cn

Qn′

]
, (39)

where αn = 1/Nβdec
n is the learning rate with βdec ∈ (0.5, 1].

The convergence of this update rule is guaranteed when∑∞
k=1 αk = ∞ and

∑∞
k=1 α

2
k < ∞. With αn = 1/Nβdec

n and
βdec ∈ (0.5, 1], both conditions are satisfied, ensuring that:

lim
Nn→∞

Qn = E
[ dmax∑

t=0

γtrRi(st, πt)
]
. (40)

The policy execution process operates in a receding hori-
zon manner, iteratively selecting and executing actions while
maintaining safety. After completing the MCTS iterations, the
execution process consists of three key steps:

1) Best Action Selection: At each planning cycle, the best
child node n∗ is selected via

n∗ = argmax
n∈Cn0

{Nn + ϵQn}, (41)

where ϵ ∈ (0, 1) balances visit count and node value. This
selection criterion is more robust than raw Q-values, reflecting
the most thoroughly explored action sequence.

2) Action Execution: The policy πn∗ associated with n∗

provides the control commands at for the current timestep:

at = [accn∗ , θ̇n∗ ]⊤, (42)

where accn∗ and θ̇n∗ represent the acceleration and steering
rate commands from the optimal policy πn∗ .

3) Tree Update: After executing the action, the planning
tree is updated by promoting n∗ as the new root node:

nnew
0 = n∗, snew

0 = f(st, at), (43)

where f(st, at) is defined in (4). The subtree rooted at n∗ is
preserved for warm-starting the next planning iteration, while
other branches are pruned.

This receding horizon approach ensures computational ef-
ficiency through tree reuse while maintaining safety through
the embedded constraint checks at each iteration.

D. Computational Complexity Analysis

The computational complexity of the proposed algorithm
stems from tree expansion and rollout simulation.

The tree expansion process considers the joint actions of
N AVs, each having |A| actions, resulting in a branching
factor of (|A|)N . For each expanded node, safety validation
checks must be performed. The V2V interactions contribute a
complexity of O(N2), V2H interactions contribute O(NM),
and V2R boundary checks contribute O(N), yielding a total
validation complexity of O(N2 +NM +N).

The rollout simulation is conducted for each new node up
to a depth dmax. Each rollout step involves state transitions and
reward evaluations. The state transitions for all vehicles require
O(N +M) operations, while evaluating pairwise interactions
in the reward computation scales as O(N2). The total rollout
complexity can be expressed as O(dmax(N

2 +NM +N)).
Considering K MCTS iterations, the worst-case computa-

tional complexity can be estimated as

O(K · dmax · |A|N · (N2 +NM +N)). (44)

In practical implementations, the actual computational cost
is often lower than this theoretical worst-case bound. The
pruning of unsafe nodes reduces the effective branching factor,
while the selective nature of UCB-based exploration ensures
efficient tree expansion. Furthermore, the algorithm structure
allows for potential parallel implementation, which can signif-
icantly improve computational efficiency.
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Fig. 8: MCTS algorithm convergence analysis.

E. Algorithm Convergence Analysis

Convergence analysis in Fig. 8 shows that the value func-
tion exhibits stable multi-phase behavior, typically converging
within 300–600 iterations. Based on this observation, we set
K = 1000 as the maximum number of MCTS iterations,
providing a sufficient margin to ensure convergence across
a broad range of scenarios. The final value standard devia-
tion remains consistently below 0.05, further confirming the
robustness of the algorithm under dynamic conditions. The
key algorithmic parameters are selected through systematic
sensitivity analysis and convergence validation. Adjustment
factors β1 = β2 = 0.2 are used to balance the influence of
relative velocity and heading angle in determining dynamic
safety thresholds. The velocity scaling factor κv = 0.3 enables
an effective trade-off between reactive safety and traffic flow
efficiency. Similarly, the risk scaling parameter λv = 0.3 pro-
vides sufficient sensitivity to relative velocity changes while
avoiding excessive conservatism. Safety thresholds are set to
Qvv

th = 0.8 and Qvh
th = 0.6, reflecting more stringent safety

considerations in scenarios involving human-driven vehicles.
These design choices collectively ensure stable and reliable
behavior across varying traffic densities, heterogeneous agent
types, and dynamic interaction patterns.

V. EXPERIMENTAL EVALUATION

Simulations are conducted in MATLAB 2024a to evaluate
the proposed approach for safe and efficient autonomous
driving at a signal-free intersection. We compare against
advanced optimization algorithms, including the Stackelberg
game approach [46] and the Nash equilibrium method [28].
Additionally, we include a baseline MCTS [34] implemen-
tation (referred to as “Baseline”) using standard tree search
with fixed thresholds, no risk adaptation, and static cooperation
logic. This setup enables direct comparison and highlights our
contributions. Parameter settings are listed in Table I, with
reward weights empirically tuned for robust safety-efficiency
trade-offs.

A. Case 1: Signal-Free Intersection (ROP = 100%)

The experimental evaluation begins with a baseline scenario
involving an AV rates of penetration (ROP) of 100% at a
signal-free intersection. As illustrated in Fig. 9(a), the test

TABLE I: ALGORITHM PARAMETERS SUMMARY

Category Parameter Description Value

MCTS

γr MCTS reward discount factor 0.95
βdec Value update decay 0.75
cexp UCB exploration const 1.0
η Policy balance factor 0.5
K Max iterations 1000
dmax Max search depth 8

Risk Factors

β1 Velocity adjustment 0.2
β2 Heading adjustment 0.2
κv Velocity scaling 0.3
λv Velocity risk scaling factor 0.3
wvv

1 V2V instant risk weight 0.6
wav

2 V2V temporal risk weight 0.4
wvh

1 V2H instant risk weight 0.4
wvh

2 V2H temporal risk weight 0.3
wvh

3 Collision prob weight 0.3
λT Temporal risk weight 0.4
λc Collision prob weight 0.3

State Uncertainty

σx X position uncertainty 0.1
σy Y position uncertainty 0.1
ϵx X uncertainty growth 0.05
ϵy Y uncertainty growth 0.05
σv Velocity uncertainty 0.2
σθ Heading uncertainty 0.1
ρxv X-vel correlation 0.3
ρyθ Y-heading correlation 0.3
Tp Prediction horizon 5.0

Reward Weights

w1 Safety weight 0.5
w2 Efficiency weight 0.3
w3 Comfort weight 0.2
wjerk Jerk penalty 0.1
wyaw Yaw rate penalty 0.1
λi Cooperation coefficient 0.5

Motion Efficiency

wvel Velocity weight 0.4
wacc Acceleration weight 0.3
wref Reference path weight 0.3
αv Overspeeding penalty 1.5
βv Underspeeding penalty 1.0
vtol Velocity tolerance 2.0

Safety Thresholds

dbase Base safety distance 1.5
dsafe Safe distance threshold 2
dmin Minimum road distance 1.0
Qvv

th V2V risk threshold 0.8
Qvh

th V2H risk threshold 0.6

Vehicle Limits

vmax Maximum velocity 8.0
amax Maximum acceleration 3.0
amed Medium acceleration 1.5

θ̇max Maximum steering rate 0.5

θ̇med Medium steering rate 0.25

Driving Style

αa Maximum accel. scaling 0.3
αT Headway time scaling 0.4
αd Safety distance scaling 0.3
βx X uncertainty scaling 0.5
βy Y uncertainty scaling 0.5
βv Velocity uncertainty scaling 0.6
βθ Heading uncertainty scaling 0.4

scenario involves four AVs approaching a four-way inter-
section simultaneously from different directions, creating a
challenging multi-agent coordination problem. The conflict
zone, marked by the red dashed box, represents the critical
area where vehicle trajectories intersect.

The velocity profiles shown in Fig. 9(b) demonstrate the
effectiveness of our method in maintaining smooth and ef-
ficient vehicle motion. The solid lines represent the mean
velocities, while the shaded areas indicate the 95% confidence
intervals. The profiles reveal that vehicles maintain relatively
stable speeds between 3–5 m/s, with only minor velocity
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(a) Illustration of MCTS simulation at a signal-free intersection.

(b) Velocity profiles of AVs.

(c) Comparison of trajectory deviations with advanced approaches.
Fig. 9: Performance analysis in Case 1 (ROP = 100%).

adjustments required for safe coordination. This suggests that
our MCTS-based framework effectively balances safety and
efficiency without requiring excessive speed reductions.

Trajectory deviation is measured as the root mean square
(RMS) distance between the actual vehicle path and a ref-
erence trajectory, defined as the shortest smooth path from
the current lane to the target lane. Figure 9(c) provides a
quantitative comparison of trajectory deviation between our
approach and two benchmark methods (Nash and Stackelberg).
Our method achieves lower trajectory deviations (mean value
of approximately 0.4 m) compared to the Nash (0.6 m)

(a) Heatmap of control inputs for controlled AVs.

(b) PET comparison.
Fig. 10: Analysis of decision-making and safety performance.
(a) Variations in control inputs. (b) PET distributions and
violations: benchmarks, Baseline (without adaptive risk evalu-
ation), and our methods with dmax of 3 and 8 (ROP = 100%).

TABLE II:
COMPARISON OF ALGORITHM PERFORMANCES IN CASE 1.

Methods Average Arrive Average Collision Average Simulation
Rate (%) Rate (%) Time (s)

Stackelberg 76.2± 4.5 16.1± 5.2 32.7± 7.3
Nash 81.6± 2.3 11.9± 3.6 46.4± 9.7

Baseline 83.7± 2.8 14.3± 5.4 21.3± 4.2
Ours lmax = 3 89.5± 3.4 3.2± 2.4 25.3± 3.2
Ours lmax = 8 94.1± 2.1 0 26.2± 3.9

and Stackelberg (0.5 m) approaches, representing significant
improvements of 35.26% and 37.56% reduction in overall
trajectory deviations, respectively. The marked improvement
in path accuracy highlights the superior performance of our
MCTS framework in maintaining trajectories under safety con-
straints, with smaller error bars indicating greater consistency.

The decision-making process is further analyzed through
the control input heatmap in Fig. 10(a), which reveals the
temporal evolution of acceleration and yaw rate commands for
each vehicle. The predominant green coloring indicates that
most control actions are moderate, with occasional stronger
interventions (darker colors) occurring primarily during critical
intersection crossing phases. This pattern demonstrates the
framework’s ability to generate comfortable trajectories while
responding appropriately to dynamic interaction scenarios.

The safety performance is quantitatively evaluated through
Post-Encroachment Time (PET) distributions shown in
Fig. 10(b). Our method with maximum tree depth dmax = 8
achieves the most favorable safety metrics, with zero instances
of PET values below the threshold of 1.5 s. This represents



12

(a) Illustration of MCTS simulation at a signal-free intersection.

(b) Velocity profiles of AVs.

(c) Comparison of trajectory deviations with advanced approaches.
Fig. 11: Performance analysis in Case 2 (ROP = 50%).

a significant improvement over the baseline approach (12.1%
violations), Stackelberg game (27.3% violations), and Nash
equilibrium (16.7% violations). The superior performance can
be attributed to our risk assessment framework and adaptive
safety thresholds that explicitly consider both immediate and
predicted vehicle interactions.

Table II demonstrates that our method with dmax = 8
achieves the best overall performance, with the highest ar-
rival rate (94.1 ± 2.1%) and zero collisions. While requiring
slightly more computation time (26.2 ± 3.9s) compared to
the baseline (21.3 ± 4.2s), this trade-off is justified by the

(a) Heatmap of control inputs for controlled AVs.

(b) PET comparison.
Fig. 12: Analysis of decision-making and safety performance.
(a) Variations in control inputs. (b) PET distributions and
violations: benchmarks, Baseline (without adaptive risk eval-
uation), and our methods with dmax of 3 and 8 (ROP = 50%).

safety improvements over traditional Stackelberg and Nash
approaches, which exhibit collision rates of 16.1% and 11.9%.

B. Case 2: Signal-Free Intersection (ROP = 50%)

To assess robustness in mixed traffic, we test with a 50% AV
penetration rate (ROP = 50%), where four AVs and four HDVs
approach the intersection from different directions (Fig. 11(a)).
The HDV driving styles are sampled from a Beta(2, 2)
distribution, yielding 25% conservative, 50% moderate, and
25% aggressive drivers. This diverse mix introduces realistic
challenges by requiring adaptation to both predictable and
unpredictable human behaviors.

The velocity profiles presented in Fig. 11(b) demonstrate
our method’s capability to handle mixed traffic interactions
effectively. Compared to the full AV scenario, the velocity
variations show larger fluctuations (between 3–5 m/s) with
wider confidence intervals, reflecting the increased uncertainty
introduced by human drivers. Nevertheless, the profiles main-
tain overall smooth transitions, indicating that our framework
successfully adapts to human driving behaviors while ensuring
safe and efficient intersection crossing.

The trajectory deviations shown in Fig. 11(c) reveals the
superior performance of our approach compared to bench-
mark methods. Our method achieves lower trajectory devia-
tions, with improvements of 51.80% and 62.43% compared
to the Nash and Stackelberg approaches, respectively. This
demonstrates our framework’s enhanced capability to handle
mixed traffic scenarios through risk assessment and adaptive
decision-making strategies.
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TABLE III:
COMPARISON OF ALGORITHM PERFORMANCES IN CASE 2.

Methods Average Arrive Average Collision Average Simulation
Rate (%) Rate (%) Time (s)

Stackelberg 55.1± 4.9 32.4± 5.8 41.7± 7.5
Nash 59.3± 3.7 29.2± 5.5 58.4± 6.1

Baseline 67.9± 5.1 17.1± 8.2 24.9± 3.6
Ours lmax = 3 85.8± 4.7 4.6± 2.9 27.3± 5.4
Ours lmax = 8 92.6± 3.3 1.7± 0.6 29.7± 5.1

(a) (b)
Fig. 13: Comparison of PET violations and trajectory devia-
tions of AVs under different HDV driving style distributions.

The control input heatmap in Fig. 12(a) illustrates more
diverse and frequent adjustments in AV behaviors compared
to the full AV scenario. The increased presence of lighter
and darker color patches indicates that AVs make more
dynamic adjustments to accommodate the less predictable
movements of human drivers. This adaptive behavior demon-
strates the framework’s capability to balance assertiveness and
cautiousness when interacting with HDVs. Safety performance
evaluation through PET distributions, shown in Fig. 12(b),
reveals the challenges of mixed traffic scenarios. While our
method with dmax = 8 maintains the best safety performance
with only 2.8% PET violations. The baseline approach shows
10.1% violations, while Stackelberg and Nash methods exhibit
significantly higher violation rates of 44.9% and 21.7%. These
results highlight the increased complexity of ensuring safety
in mixed traffic environments.

Table III shows that our method with dmax = 8 maintains
excellent performance even in mixed traffic scenarios, achiev-
ing a 92.6 ± 3.3% arrival rate and minimal collision rate of
1.7± 0.6%. While requiring slightly longer computation time
(29.7 ± 5.1s) than the baseline (24.9 ± 3.6s), this represents
a dramatic improvement over traditional methods, as both
Stackelberg and Nash approaches suffer from high collision
rates (32.4% and 29.2% respectively) and low arrival rates in
the presence of human drivers.

C. Component Impact Quantification

To validate the effectiveness of our HDV behavior frame-
work with driving style consideration, we conducted a brief
ablation study using three typical driving style distributions:
conservative-dominated (ηh ∼ Beta(1, 3)), balanced (ηh ∼
Beta(2, 2)), and aggressive-dominated (ηh ∼ Beta(3, 1)). We

compared the PET violations and trajectory deviations under
these distributions in the 50% AV penetration rate scenario.

1) HDV Driving Style Classification Impact: As shown in
Fig. 13(a), our driving style-based HDV behavior classifica-
tion demonstrates robust performance across different traffic
compositions. The aggressive-dominated scenario presented
the highest challenges with PET violations of 3.8%, com-
pared to 2.8% in the balanced scenario and 2.3% in the
conservative-dominated scenario. These results confirm that
an aggressive driving style is associated with a higher safety
risk. It can be observed that the PET violation rate exhibited
minimal changes under different driving styles, indicating the
stability of our framework in ensuring safety. Notably, when
the surrounding HDVs adopted a more aggressive driving
style, the trajectory deviation of the AV increased. This
response illustrates our framework’s adaptive risk assessment
mechanism, which dynamically adjusts safety thresholds based
on detected driving behaviors. When encountering aggressive
maneuvers (characterized by higher accelerations and shorter
time headways), the framework dynamically expands safety
margins and uncertainty bounds as defined in (7) and (15),
resulting in more dynamically adjusted planning trajectories
that prioritize collision avoidance over accurate reference path
following. Such adaptive behavior ensures consistent safety
performance despite variations in surrounding HDVs driving
styles within highly heterogeneous traffic environments.

2) Dynamic Safety Threshold Impact: Figure 13(b) quanti-
fies the substantial benefits of our adaptive safety threshold
mechanism. Compared to fixed baseline thresholds (dsafe =
2.0 m), our full dynamic approach reduces PET violations
by 67.8% (from 8.7% to 2.8%) and trajectory deviations by
33.9% (from 0.89 m to 0.24 m), while improving arrival rates
from 87.3% to 92.6%. The velocity-adaptive configuration
achieves intermediate performance with 4.6% PET violations,
confirming that the complete integration of relative velocity
(κv|∆vij |), heading differences (α2), and spatial factors (α3)
provides superior safety guarantees. This validates that our
context-aware safety margins effectively handle the complex
multi-directional conflicts at intersections, where traditional
fixed-distance approaches fail to capture the dynamic nature of
vehicle interactions. While not explicitly shown in Fig. 13, our
adaptive cooperation mechanism λi(t) contributes significantly
to system fairness. The dynamic waiting-time awareness pre-
vents persistent vehicle exclusion while maintaining efficiency,
ensuring that no AV is indefinitely delayed due to excessive
cooperation with other vehicles. These results demonstrate the
effectiveness of our adaptive safety and cooperation mech-
anisms in balancing multiple objectives across diverse traffic
scenarios. Future work will focus on developing meta-learning
approaches for automatic parameter tuning based on real-time
traffic patterns.

D. Case 3: Signal-Free Intersection (ROP 20% - 100%)

To evaluate safety under varying AV penetration rates,
experiments were conducted with ROP ranging from 20% to
100%. Fig. 14 shows the PET distributions, revealing improved
safety as AV penetration increases. At low ROPs (20%-
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Fig. 14: PET distributions and violations across various ROPs.

33.3%), PET distributions are more variable, with low vio-
lation rates (0.0%-3.0%) due to the unpredictability of HDVs.
In the medium range (42.8%–57.1%), violation rates initially
rise to 5.6% at 42.8%, then stabilize around 2%, reflecting
the complexity of mixed traffic. At high ROPs (66.7%-100%),
violation rates drop to 0%, and PET distributions narrow,
demonstrating consistent safety margins.

VI. CONCLUSION

This paper presents a safety-critical decision-making frame-
work for AVs at unsignalized intersections, integrating MCTS
with risk assessment. The proposed framework demonstrates
significant advantages through three key innovations: a multi-
agent MCTS structure for efficient action space exploration,
a safety assessment mechanism for comprehensive risk eval-
uation, and an adaptive reward function balancing safety
and efficiency. Experimental results validate the framework’s
effectiveness across different AV penetration rates. In homoge-
neous scenarios (100% AVs), our approach reduces trajectory
deviations by 37.56% compared to benchmark methods while
maintaining zero PET violations. The framework shows even
more substantial improvements in mixed traffic scenarios
(50% AVs), reducing trajectory deviations by 62.43% while
effectively handling uncertainties from human drivers. The
demonstrated balance between safety and efficiency suggests
strong potential for real-world autonomous driving applica-
tions. Future work will focus on improving computational
efficiency to address the exponential growth in action space
with increasing agents, including developing efficient pruning
strategies and parallel computation techniques. Additionally,
extending the framework to diverse intersection geometries
could further enhance its practical applicability. Furthermore,
we plan to explore automatic tuning mechanisms for the multi-
objective reward function weights to enhance adaptability
across diverse traffic conditions. While our fixed-weight im-
plementation has demonstrated good performance, integrating
Bayesian optimization or evolutionary algorithms to adap-
tively adjust these weights based on real-world traffic data
could yield more nuanced decision-making that better balances
safety, efficiency, and comfort. We also plan to implement
a structured hierarchical safety zone concept that triggers
differentiated responses based on distinct risk levels, making
the system’s collision avoidance behavior more interpretable
and human-like.
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“Calibration and evaluation of car following models using real-world
driving data,” in Proc. IEEE ITSC, 2017, pp. 1–6.

[28] P. Hang, C. Huang, Z. Hu, and C. Lv, “Driving conflict resolution of
autonomous vehicles at unsignalized intersections: A differential game
approach,” IEEE/ASME Trans. Mechatron., vol. 27, no. 6, pp. 5136–
5146, 2022.

[29] J. Zhang, S.-C. Chai, B.-H. Zhang, and G.-P. Liu, “Distributed model-
free sliding-mode predictive control of discrete-time second-order non-
linear multiagent systems with delays,” IEEE Trans. Cybern., vol. 52,
no. 11, pp. 12 403–12 413, 2022.

[30] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Trans. Comput.
Intell. AI Games, vol. 4, no. 1, pp. 1–43, 2012.

[31] D. Lenz, T. Kessler, and A. Knoll, “Tactical cooperative planning for
autonomous highway driving using monte-carlo tree search,” in Proc.
IEEE IVS, 2016, pp. 447–453.

[32] P. Zhou, X. Sun, and T. Chai, “Enhanced nmpc for stochastic dynamic
systems driven by control error compensation with entropy optimiza-
tion,” IEEE Trans. Control Syst. Technol., vol. 31, no. 5, pp. 2217–2230,
2023.

[33] J. Wurts, J. L. Stein, and T. Ersal, “Design for real-time nonlinear model
predictive control with application to collision imminent steering,” IEEE
Trans. Control Syst. Technol., vol. 30, no. 6, pp. 2450–2465, 2022.

[34] C. F. Hayes, M. Reymond, D. M. Roijers, E. Howley, and P. Mannion,
“Risk aware and multi-objective decision making with distributional
monte carlo tree search,” arXiv preprint arXiv:2102.00966, 2021.

[35] P. Weingertner, M. Ho, A. Timofeev, S. Aubert, and G. Pita-Gil, “Monte
carlo tree search with reinforcement learning for motion planning,” in
Proc. ITSC, 2020, pp. 1–7.

[36] M. Wang et al., “Speed planning for autonomous driving in dynamic
urban driving scenarios,” in Proc. ECCE, 2020, pp. 1462–1468.

[37] C.-K. Ho and C.-T. King, “Lac-rrt: Constrained rapidly-exploring ran-
dom tree with configuration transfer models for motion planning,” IEEE
Access, vol. 11, pp. 97654–97663, 2023.

[38] Y. Gao, D. Li, Z. Sui, and Y. Tian, “Trajectory planning and tracking
control of autonomous vehicles based on improved artificial potential
field,” IEEE Trans. Veh. Technol., vol. 73, no. 9, pp. 12468–12483, 2024.

[39] R. Szczepanski, “Safe artificial potential field: Novel local path plan-
ning algorithm maintaining safe distance from obstacles,” IEEE Robot.
Autom. Lett., vol. 8, no. 8, pp. 4823–4830, 2023.

[40] X. Shi and X. Li, “Empirical study on car-following characteristics of
commercial automated vehicles with different headway settings,” Transp.
Res. Part C: Emerg. Technol., vol. 128, p. 103134, 2021.

[41] T. Ravi and D. Siddharth, “Handover count based map estimation of
velocity with prior distribution approximated via ngsim data-set,” IEEE
Trans. Intell. Transp. Syst., vol. 23, no. 5, pp. 4352–4361, 2022.

[42] F. Wu, Z. Cheng, H. Chen, Z. Qiu, and L. Sun, “Traffic state estimation
from vehicle trajectories with anisotropic gaussian processes,” Transp.
Res. Part C: Emerg. Technol., vol. 163, p. 104646, 2024.

[43] X. Chen, G. Qin, T. Seo, J. Yin, Y. Tian, and J. Sun, “A macro-micro
approach to reconstructing vehicle trajectories on multi-lane freeways
with lane changing,” Transp. Res. Part C: Emerg. Technol., vol. 160, p.
104534, 2024.

[44] X. Wang, J. Han, Y. Liu, H. Shi, L. Chen, F. Zhong, and S. Liu, “A
dynamics model for driving behavior based on coupling actuation of
bounded rational cognition and diverse emotions,” Transp. Res. Part C:
Emerg. Technol., vol. 159, p. 104479, 2024.

[45] M. Huang, M. Liu, and H. Kuang, “Vehicle routing problem for fresh
products distribution considering customer satisfaction through adaptive
large neighborhood search,” Comput. Ind. Eng., vol. 190, p. 110022,
2024.

[46] P. Hang, C. Huang, Z. Hu, Y. Xing, and C. Lv, “Decision making of
connected automated vehicles at an unsignalized roundabout considering
personalized driving behaviours,” IEEE Trans. Veh. Technol., vol. 70,
no. 5, pp. 4051–4064, 2021.

Zhihao Lin received the M.S. degree from the
College of Electronic Science & Engineering, Jilin
University, Jilin, China. He is currently pursuing
a Ph.D. degree with the College of Science and
Engineering, University of Glasgow, Glasgow, U.K.
His main research interests focus on multi-sensor
fusion SLAM systems, reinforcement learning, and
hybrid control of vehicle platoons.

Jianglin Lan received the Ph.D. degree from the
University of Hull in 2017. He has been a Lev-
erhulme Early Career Fellow and Lecturer at the
University of Glasgow since 2022. He was a Vis-
iting Professor at the Robotics Institute, Carnegie
Mellon University, in 2023. From 2017 to 2022,
he held postdoc positions at Imperial College Lon-
don, Loughborough University, and University of
Sheffield. His research interests include artificial
intelligence, control theory, and safe autonomy.

Christos Anagnostopoulos received the BSc, MSc,
and PhD degrees in computing science from Athens
University. He is an Associate Professor at Univer-
sity of Glasgow. His expertise is at the intersection
of distributed computing and machine learning. He
has received funding by EU H2020/Horizon, EPSRC
and industry. He is an author of more than 200 jour-
nals/conferences. He serves as general chair of IEEE
ICDCS 2025 and editor-in-chief of Open Comput.
Sci. (De Gruyter).

Zhen Tian received his bachelor degree in electronic
and electrical engineering from the University of
Strathclyde, Glasgow, U.K. in 2020. He is cur-
rently pursuing the Ph.D. degree with the College
of Science and Engineering, University of Glasgow,
Glasgow, U.K. His main research interests include
Interactive vehicle decision system and autonomous
racing decision systems.

David Flynn received the B.Eng. degree (Hons.)
in Electrical and Electronic engineering, the M.Sc.
degree (Distinction) in Microsystems, and the Ph.D.
degree in Microscale Magnetic Components from
Heriot-Watt University, Edinburgh, UK, in 2002,
2003, and 2007, respectively. He is a Professor of
Cyber Physical Systems at University of Glasgow.
He is a co-founder of the UK’s EPSRC National
Centre for Energy System Integration and the UK
Offshore Robotics and Artificial Intelligence Hub for
Offshore Energy Asset Integrity Management.


	INTRODUCTION
	Safety-critical decision making framework Overview
	The Proposed System Formulation
	Multi-Agent MDP Formulation
	Safety Assessment

	The Multi-Agent MCTS Framework
	Safety-Critical Tree Search Design
	Multi-Objective Reward Design
	From Reward to Optimal Policy
	Computational Complexity Analysis
	Algorithm Convergence Analysis

	EXPERIMENTAL EVALUATION
	Case 1: Signal-Free Intersection (ROP = 100%)
	Case 2: Signal-Free Intersection (ROP = 50%)
	Component Impact Quantification
	Case 3: Signal-Free Intersection (ROP 20% - 100%)

	Conclusion
	References
	Biographies
	Zhihao Lin
	Jianglin Lan
	Christos Anagnostopoulos
	Zhen Tian
	David Flynn


