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DPL-SLAM: Enhancing Dynamic Point-Line
SLAM Through Dense Semantic Methods

Zhihao Lin , Qi Zhang , Zhen Tian, Peizhuo Yu, and Jianglin Lan

Abstract—The traditional visual simultaneous localiza-
tion and mapping (SLAM) systems rely on the static-world
assumption and cannot handle dynamic objects. This article
presents a novel SLAM system, Semantic Point and Line
Features SLAM (DPL-SLAM), that can handle dynamic envi-
ronments and can be used for real-time operation. To handle
dynamic objects, we apply object detection to identify 80 cat-
egories within the scene and implement unique handling
of features both within and outside the detected bounding
boxes using Lucas–Kanade (LK) optical flow and epipolar
constraint. Within bounding boxes, we propose an efficient
local elimination algorithm to address features that violate
the epipolar constraint. We designate nearby and intra-box
regions that deviate from the constraint as potential dynamic
areas, and conditionally eliminate features within these areas to varying extents, thus minimizing incorrect elimination
of stable data associations. Outside the bounding boxes, non-compliant features are regarded as outliers and directly
eliminated, making the system robust to unknown objects. We have evaluated DPL-SLAM on the TUM RGB-D and KITTI
STEREO datasets and compared it with state-of-the-art SLAM systems. The results show that DPL-SLAM outperforms
most SLAM systems in various dynamic scenarios and exhibits excellent robustness and real-time performance, thus
effectively handling dynamic noise interference under indoor RGB-D and outdoor stereo modes. Finally, we conduct
experiments in a real-world environment to verify the algorithm’s effectiveness.

Index Terms— Deep learning, localization, simultaneous localization and mapping (SLAM), visual camera sensors.

I. INTRODUCTION

S IMULTANEOUS localization and mapping (SLAM) is
crucial for robotic vision, facilitating camera pose esti-

mation and mapping of unknown environments. Although
advancements in point-based [1], [2], line-based [3], and direct
SLAM [4] appear due to the camera being cheaper and lighter
than other sensors [5], a key challenge persists: most visual
SLAM systems inherently assume static environments. This
contradicts the dynamic nature of real-world environments,
which causes inaccuracies or instabilities in data associations,
resulting in ineffective SLAM implementation.
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Historically, overcoming this challenge has usually relied on
extracting and leveraging reliable static features across varied
environments. Traditional geometric methods, such as random
sample consensus (RANSAC) [6], have been employed to dis-
card mismatches in both static and dynamic scenes. However,
these methods stumble when the entire view is occupied by
dynamic objects.

Recent research addresses this issue by integrating tra-
ditional geometric methods with deep learning to handle
dynamic objects. Based on object detection, systems like
Crowd-SLAM [7] have demonstrated remarkable potential,
even outperforming semantic segmentation-based methods
when processing non-predefined moving objects. However, the
direct removal of feature points within all bounding boxes may
lead to insufficient data associations for pose estimation. Fur-
thermore, semantic segmentation algorithms like SegNet [8] or
Mask-RCNN [9] struggle to balance segmentation accuracy,
system load, and the number of detected object classes.
They normally fail to achieve real-time operation when high
accuracy and extensive class detection are essential.

Moreover, the limitations of using only point features
in dynamic visual SLAM environments must be acknowl-
edged. Point features tend to fail in low-texture environments,
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such as corridors, and are particularly susceptible to changes
in illumination. Additionally, the sparsity of point features
hinders the task of visualizing the environment via a 3-D map,
presenting yet another challenge. On the other hand, visual
SLAM systems based on deep learning methods typically
assume that only the semantic classes detected in the scene
are capable of movement. They do not fully consider the wide
range of scenes encountered in real life. When objects that the
object detection algorithm fails to successfully identify move
within the scene, the system will fail.

In this article, we present DPL-SLAM, an innovative
real-time semantic SLAM solution to address the funda-
mental challenges posed by existing methods. By fusing
ORB-SLAM3, a state-of-the-art SLAM system, with the
Line Segment Detector algorithm [10], our proposed method
accomplishes enhanced pose estimation. DPL-SLAM extracts
abundant line segment features to achieve comprehensive
structural-semantic representation, effectively capturing exten-
sive edge information within scenes. Additionally, our method
encompasses invariance to illumination and rotation, thereby
enhancing the expressiveness of the extracted lines. To address
the issues related to dynamic objects, we have integrated a
dynamic point removal algorithm into the front end of the
SLAM system. We employ CUDA-optimized YOLOv5 [11],
a cutting-edge single-stage object detector, to extract semantic
information of 80 different object categories in the envi-
ronment. This real-time detection process ensures accurate
and efficient recognition of various objects. We propose an
algorithm utilizing the Lucas–Kanade (LK) optical flow [12]
to determine the motion status of detected classes and variably
eliminate points within each bounding box based on the
detected ratio of abnormal features while preserving the key
points related to static objects. Moreover, abnormal features
outside the boxes are directly removed.

Owing to our ingenious integration of the epipolar con-
straint from the optical flow with dense semantic information,
we can effectively eliminate the dynamic features of semantic
objects and handle features on unknown moving objects.
Meanwhile, we preserve the features of static unknown objects
and semantic objects (such as vehicles parked along the road)
to compute the camera’s pose. We consider all semantic
classes as potential motion classes. In other words, even if
an object is preclassified as a potential dynamic category,
as long as the object remains stationary, it should satisfy
the consistency of optical flow and epipolar constraints, and
we will retain the features on the object to restore the
camera pose.

As illustrated by the example in Fig. 1, points of both the
detected and undetected dynamic cars within the frame are
eliminated, while those of the static car remain unchanged.

The contributions of this work are summarized as follows.
1) We introduce DPL-SLAM, a real-time, dynamic seman-

tic SLAM system suitable for indoor and outdoor
environments. Real-world experiments show the sys-
tem’s capacity for sparse point-and-line reconstruction of
static backgrounds, and the experiments on the TUM and
KITTI datasets show our good localization performance
in various dynamic environments.

Fig. 1. General depiction of dynamic point detection in our system. The
image (a) represents the intermediate processing result after applying
our dynamic point detection algorithm, (b) represents an RGB image
from the KITTI outdoor dataset [33], and (c) represents the final output of
our system. In the first row (images a, b, c), points corresponding to cars
outside the bounding boxes or undetected are classified as dynamic. In
the second row, points associated with a static car using semantic prior
are also identified as static.

2) Building upon ORB-SLAM3, we propose a visual
SLAM framework that features a versatile deployment
capacity across different camera platforms without the
dependence on predefined label and texture information,
thus providing considerable flexibility. It fully leverages
the structural, textural, and semantic information present
in the scene to eliminate dynamic noise interference and
enhance the system’s localization accuracy.

3) Our proposed novel dynamic point and line culling
algorithm effectively harnesses dense detected semantic
classes and geometric optical flow. It does not rely on a
single piece of information and exhibits a strong capa-
bility in managing both known and unknown dynamic
objects, thus maintaining robust performance across var-
ious environments.

II. RELATED WORK

A. Advancements in Dynamic vSLAM
via Geometric Methods

Dynamic visual SLAM has seen enhancements through a
range of geometric techniques. Sun et al. [13] brought forward
an RGB-D-based online motion removal technique, utilizing
optical flow for tracking while continuously updating the
foreground model. Cheng et al. [14] merged the LK sparse
optical flow with a fundamental matrix to filter out dynamic
features, further consolidating the effectiveness of optical flow
in dynamic object management.
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Fig. 2. Workflow of our DPL-SLAM system. The dynamic object clearing system works in four stages. It begins by extracting point-line features
from input images. Then, it identifies potential dynamic regions through object detection and epipolar constraint validation. Next, depending on the
proportion of dynamic features within each box, it selectively removes features. Lastly, it updates the remaining stable features for camera pose
recovery in the backend processing. This system effectively manages dynamic object exclusion in SLAM operations.

Other innovative contributions include the use of point
correlations in [15] for differentiating static and dynamic
map points, and the method in [16] for identifying dynamic
components through long-term consistency using conditional
random fields. However, these techniques grapple with issues
related to slow or obstructed objects and are usually confined
to certain camera types. Generally, the above geometric visual
SLAM approaches have lower robustness in dynamic scenes
than semantic-based methods.

Some work has utilized inertial measurement units (IMUs)
to enhance the handling of dynamic objects. Kim et al. [17]
used IMU to compensate for the rotation of image frames
and defined the feature transformation between two frames
as the corresponding motion vector. Yin et al. [18] proposed
the Dynam-SLAM, which detects dynamic features based on
visual scene flow and IMU. These methods lack semantic
understanding of the scene and are unable to handle complex
motion patterns effectively.

B. Dynamic vSLAM Enhancement
by Semantic Techniques

Applying semantic segmentation or object detection can
provide visual SLAM systems with prior motion information.
An example is DS-SLAM [19], which integrates SegNet [8]
with LK optical flow to detect moving humans. Fan et al. [20]
use BlitzNet [21] along with the epipolar constraint to exclude
outliers effectively in the dynamic mask areas of several
movable classes.

Other techniques like using DeepLab v3+ in [22]
for dynamic object segmentation and subsequent filtering
through multiview geometry have been implemented. Liu and
Miura [23] propose to use moving probabilities to update and
disseminate semantic information. Gao et al. [24] use lighter
object detection and multiview geometry to cull dynamic fea-
tures. However, these methods have their limitations, including
the ability to segment only 20 object classes and adaptability
to different camera types.

Recent research has expanded to treat all classes in the scene
as potential dynamic areas and to increase the stability of

dynamic detection. For example, Zhang and Li [25] achieved
consistency in motion detection for each bounding box using a
threshold algorithm and ambiguity constraints. He et al. [26]
employed the average reprojection error across multiple frames
to recover static points and refined the segmentation of
moving objects with depth maps to reduce the uncertainty.
Min et al. [27] proposed a method for dealing with motion
blur and reallocating feature points to identify static and
dynamic features accurately. However, they encountered diffi-
culties in handling unknown objects.

In parallel, Yuan et al. [28] utilize line structures to
decipher environmental structures, but their approach
is constrained by the camera and environment types.
Wang et al. [29] propose the DRG-SLAM, which combines
line and planar features. However, like previous methods,
it only works with RGB-D cameras in indoor settings. These
recent studies prioritized geometric methods over optical
flow, resulting in decreased accuracy, thus raising the need to
develop a more effective approach.

III. SYSTEM OVERVIEW

As depicted in Fig. 2, our DPL-SLAM system improves
pose estimation through the intelligent integration of point
and line features. It applies semantic and geometric filters
to dynamic points and lines in RGB images, with a
learning-based approach for initial bounding box detection,
and the Optical Flow method managing dynamic elements.
Our unique algorithm forms the system’s core, intelligently
and variably identifying and eliminating moving points and
lines. The system integrates the point features of ORB-SLAM3
with two new functions: the line features of PL-SLAM [30]
and the dynamic feature removal of DS-SLAM [19]. Details
of how to integrate them are provided in the following two
sections.

A. Line Features-Based SLAM
Unlike traditional point-based SLAM methods, our pro-

posed system incorporates line features, which effectively
mitigates the interference caused by dynamic noise and thus
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Fig. 3. Illustration of the line feature matching process in two frames.
We first compare the line segment descriptors between Ik−1 and the
candidate line segment descriptors in Ik according to the grid ID, then
select the closest match. A definitive match is established based on the
matched lines’ cosine angle similarity and the degree of overlap.

greatly enhances the system robustness in dynamic scenes.
Moreover, the inclusion of line features allows for effective
dynamic object handling in the generated map, as the map
lines of dynamic objects tend to disappear over time.

1) Line Features Matching: Our system employs a compre-
hensive line feature-matching methodology for stereo camera
configurations. The initial step involves identifying line fea-
tures from the left and right images from the stereo camera
that share the same grid ID at the start and endpoints. The
line descriptor from the left image is subsequently compared
with that of the right image’s candidate line segment, and the
descriptor with the minimal distance is chosen for matching.
The process concludes by validating the overlap threshold
and examining the differences in cosine angles of the direc-
tion vectors between matched lines, as depicted in Fig. 3.
In the figure, Tk−1,k ∈ SE(3) represents the relative pose
transformation between frames or the left and right image
frames. A line segment in 3-D space, defined by a start
point B j and an endpoint F j , results in two points: the start
point ai and the endpoint fi when projected onto the image
coordinate system Ik−1 at time t − 1. At the time t , the
same line segment projected onto image coordinate system Ik

results in new points: start point a′i and endpoint f ′i . This
rigorous procedure ensures reliable and accurate matching of
line features in stereo images, thereby enhancing our system’s
overall performance and robustness.

2) Line Feature Attributes Updating Algorithm: To eliminate
redundant line features and maintain stable tracking, we ini-
tialize the depth values of line endpoints, the representation
of line segments as 3-D vectors, and the disparity. These
attributes are crucial for constructing the key line features for
reference tracking in the map and optimizing the single-frame
camera pose in the SLAM system, as well as for local map
optimization, updating the co-visibility graph and essential
graph.

For matching segment pairs satisfying the preliminary filter
criteria, we perform bidirectional cosine similarity matching
for line-matching pairs with the same start and endpoint IDs.

Line segments with low similarity are omitted. For matching
line segments from the left and right images of the stereo
camera, we form homogeneous coordinate vectors for the start
and endpoints of each line segment. These vectors aid in
optimizing the pose during bundle adjustment. We estimate the
degree of overlap between left and right line segments, with
line segments exhibiting an overlap greater than 0.75 deemed
stable. Furthermore, we apply a disparity threshold to filter
matched line segments, discarding those with small disparities.
The depth value D is estimated as D = (K/Dv), where
K is the ratio of the left and right images’ focal length,
and Dv is the disparity value. In the RGB mode, Dv is directly
obtained from the depth image.

3) Line Features Optimizing Algorithm: In 3-D visual SLAM
systems, map line features play a critical role in environment
modeling and localization. However, factors like sensor noise
and dynamic environments can induce errors in the orientation
and position of these features. To address this, we adopt an
optimization-based reference keyframe pose correction method
to enhance the accuracy and consistency of map line features.

Our approach comprises two main steps: reference keyframe
selection and pose correction. We carefully select a suitable
reference keyframe as a benchmark considering a broad view-
ing angle range and minimal reprojection error. For each
map line feature, we perform pose correction based on its
corresponding reference keyframe. If the reference keyframe
matches the current one, we use its corrected reference
keyframe for pose correction; otherwise, we use its original
reference keyframe.

The process of pose correction is detailed as follows. Let
Rwr and twr represent the rotation matrix and the translation
vector from the reference keyframe to the world coordi-
nate system, respectively. We assume the world coordinates
of the map line features to be corrected as P3Dw, with
P3Dwsp and P3Dwep denoting the start and end coordinates of the
line features, respectively. By using the Sim3 transformation
matrices Srw and corSwr, we transform the pose of map line
features from the reference keyframe of the current frame to
the corrected reference keyframe, as shown in the following
equations:

CorP3Dwsp
= corSwr×

(
Srw × P3Dwsp

)
CorP3Dwep

= corrSwr×
(

Srw × P3Dwep

)
(1)

where × denotes matrix multiplication, and CorP3Dwsp and
CorP3Dwep represent the start and end coordinates of the
corrected map line feature in the corrected reference keyframe
coordinate system.

By applying this correction process, we achieve precise
coordinate transformation and enhanced camera pose accu-
racy. Our method effectively mitigates positioning errors and
dynamic environment interference, improving the accuracy
and consistency of map line features and providing more
reliable 3-D visual SLAM results.

B. Dynamic Features Removing
We employ several strategies to mitigate the interference

of dynamic object feature point pairs on the pose estimation
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Fig. 4. Examples of moving object detection are illustrated. (a)–(f) Examples of sequential temporal relationships within the image sequences
of the TUM indoor dataset [32]. The first row presents the original RGB image. The second row demonstrates the outcomes of the proposed
semantic module and geometric constraint detection. The third row displays the selective feature removal results, guided by the proportion of
anomalous features detected from the previous stage. Anomalous features are highlighted in pink, and blue signifies potential dynamic features,
which, if exceeding a certain proportion, are designated for removal. Static features are marked in green.

of the SLAM system. First, we utilize object detection to
identify dynamic objects in the scene. Second, we apply
the LK algorithm to enforce epipolar constraints based on
the fundamental matrix. This step ensures that the feature
point pairs adhere to the geometric constraints imposed by
the camera motion. Lastly, we incorporate a dynamic fea-
ture point removal mechanism based on the proportion of
dynamic feature points within the bounding box of the detected
dynamic object. By setting a threshold for the proportion,
we can effectively filter out dynamic feature points that may
introduce erroneous estimations into the SLAM system. These
approaches collectively contribute to the system’s robustness
in handling dynamic object interference. More details of the
dynamic feature detection and culling strategies are provided
below.

1) Dynamic Feature Detection: Our research presents a
robust approach for detecting dynamic points and lines within
an input image. This novel method improves upon the motion
consistency checking approach in DS-SLAM [19] by enhanc-
ing the Harris corner matching via the LK optical flow
pyramid [12].

Different from the traditional Harris corners [31], we discard
the matches near the pixel edge or those whose central pixel
blocks display high disparity are excluded, thereby refining
the pool of candidate points.

Subsequently, we calculate the distance between a remain-
ing point and its corresponding epipolar line. The points
exceeding a predefined distance threshold are classified as
outliers. This process is also applied to line features, with
rigorous, threshold-based removal of irrelevant points being a
cornerstone of our algorithm’s precision.

Following this, our method incorporates a RANSAC
algorithm [6] to identify the fundamental matrix yielding the
maximum inliers. This matrix forms the basis for computing
the polar line of the current frame and mapping the points
in the preceding frame to their corresponding search domains
(epipolar lines) in the current frame.

Let the matched points in the preceding and current frames
be p1 and p2, respectively, and their homogeneous coordinate
forms be P1 and P2. Then, we have the following:

P1 = [u1, v1, 1], P2 = [u2, v2, 1]
p1 = [u1, v1], p2 = [u2, v2] (2)

where u, v are the image coordinate values. The corresponding
epipolar line L1 is then calculated as

L1 = [X, Y, Z ] = F P1 = F[u1, v1, 1] (3)

where X, Y, Z represent the line vector, and F is the fun-
damental matrix. We then compute the distance between the
matched point and its corresponding epipolar line as follows:

D =

∣∣PT
2 F P1

∣∣√∥∥X2
∥∥+ ∥∥Y 2

∥∥ (4)

where D represents the distance. If D exceeds a preset
threshold, the feature point is considered an outlier.

2) Dynamic Feature Culling: Following the detection of
dynamic features, we further process the features within the
object boxes by integrating semantic information. To maximize
the retaining of key data while minimizing erroneous key
feature matches, we propose a local feature filtering algorithm.
The key features within a 15-pixel radius centered on a
dynamic feature are completely removed. If an object box
has dynamic features that account for more than 40% of all
features in the frame, all features in that box are not passed
to the backend.

Examples of moving object detection are shown in Fig. 4.
In the “Dynamic Feature Detection” row, pink features rep-
resent dynamic features detected by the epipolar geometry
method. Blue dots stand for candidate dynamic features within
the dynamic box that satisfy the epipolar constraint, but
their removal depends on the proportion of pink features in
the box. In Fig. 4(a), our system adeptly captures dynamic
points on a person’s right hand and dynamic line features on
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the legs. In the “Dynamic Feature Culling” row of Fig. 4(a),
the remaining green features are passed to the backend as static
key features for stable data association. As can be observed,
our local culling algorithm did not fully remove the lines on
the person’s body, leaving static features on the lower half for
pose estimation. Red arrows display the direction of optical
flow, showing that our method can effectively eliminate key
features not aligning with the overall optical flow direction,
thereby facilitating accurate pose estimation.

For features outside the semantic boxes, we directly remove
the dynamic points detected in the image background to elim-
inate unstable data associations, which enhances our ability
in the unknown objects. The overall algorithm is illustrated
in Algorithm 1.

Algorithm 1 Dynamic Points Culling Algorithm
Input: Bounding boxes Bn , key points for the current

frame Pn , dynamic key points for the current frame D Pn .
Output: Static key points judged as static for the current

frame Sn .
1: Sn ← Pn .
2: for each bounding box Bn(i) in Bn do
3: boola ← 0, count← 0.
4: for each dynamic key point (dun, dvn) in D Pn do
5: if (dun, dvn) in DBn(i) then
6: boola ← 1, count← count+ 1.
7: end if
8: end for
9: if count > 0.4 ∗ |Pn| then

10: Sn ← Sn \ Bn(i).
11: else
12: for each key point (un, vn) in Pn do
13: if (un, vn) ∈ Bn(i) and boola = 1 and√

(un − dun)2 + (vn − dvn)2 ≤ 15 then
14: Sn \ (un, vn).
15: end if
16: end for
17: end if
18: end for

IV. EXPERIMENTS AND RESULTS

The experiments are conducted on a Linux machine with
the Ubuntu 18.04.6 LTS OS, a 12th generation 16-thread Intel
Core i5-12600KF CPU, an NVIDIA GeForce RTX 3070Ti
GPU, and 16 GB of RAM. For object detection, we utilize
the YOLOv5-s model to have an optimal balance between
accuracy and real-time performance. We evaluate the efficacy
of our DPL-SLAM system on the TUM RGB-D indoor
dataset [32] and the KITTI binocular outdoor dataset [33]
and investigate its robustness across different camera setups.
Finally, we test the proposed method in the real world using
the ground-truth trajectories captured by our system in the
same but static environment with the same movement pattern.

The TUM and KITTI datasets are described below.
1) Sensors: In the experiments for the TUM dataset, the

Kinect RGB-D camera is used to capture the scene.

Fig. 5. Intel D435i RGB-D camera utilizes the structured light triangu-
lation method for depth sensing.

It consists of three components: RGB camera, depth
sensing, and microphone array. Depth sensing is
achieved with 30 frames/s by an infrared (IR) emitter
and an IR depth sensor.
Specifically, as shown in Fig. 5, the device projects
structured light with predefined patterns by the IR
emitter, and the depth sensor gets the pattern of the
reflected light, which is altered by the interference
of the irradiated object. Then, the depth sensor uses
trigonometry to calculate the vertical distance between
the IR emitter-depth sensor line to the pixel, namely the
pixel’s depth.
The experiments in the KITTI dataset use two Point
Gray Flea 2 (FL2-14S3C-C) cameras. Its frame rate
is 10 Hz.

2) TUM dataset: The TUM RGB-D dataset comprises
image sequences from dynamic indoor settings, contain-
ing various line densities and scene dynamics conducive
for SLAM analysis. We selected four walking and two
sitting sequences to demonstrate high and low dynam-
ics, respectively. The walking sequences (w/half, w/rpy,
w/static, w/xyz) capture two individuals in motion,
including chair movement, while the sitting sequences
(s/half, s/xyz) document two individuals in conversa-
tion with minimal movements. The appended terms
“half,” “rpy,” “static,” and “xyz” specify different cam-
era movements.

3) KITTI dataset: The KITTI dataset consists of images in
natural and urban outdoor settings. The KITTI dataset
is a collection of images captured in varied natural and
urban outdoor environments. Our research specifically
zeroes in on sequences 00–10, all of which supply us
with verified ground truth data. The sequences we have
chosen for analysis are characterized by their unique
mix of traffic density and the prevalence of man-made
structures. By conducting a comprehensive examination
of these sequences, we can gauge the effectiveness and
robustness of our DPL-SLAM system across an array of
different driving environments.
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TABLE I
COMPARISON BETWEEN OUR DPL-SLAM AND THE EXISTING SLAM SYSTEMS BASED ON ORB-SLAM3

TABLE II
COMPARISON BETWEEN OUR DPL-SLAM AND THE LATEST SLAM SYSTEMS

To analyze the experimental results, we consider the met-
rics of absolute trajectory error (ATE) and relative pose
error (RPE). The ATE reflects the overall consistency of the
estimated trajectory, while RPE provides an estimation of
the local accuracy within a fixed time span 1, incorporating
both trajectory and rotation aspects. Let E1, . . . , En ∈ SE(3)

represent the estimated pose sequence and G1, . . . , Gn ∈

SE(3) represent the ground-truth pose sequence. The ATE at
time step t , denoted as At , is calculated as follows:

At = E−1
t SGt (5)

where S denotes the rigid body transformation that scales the
estimated trajectory to match the ground-truth scale. The RPE
at time step t , denoted as Rt , is calculated as follows:

Rt =
(
E−1

t Et+1

)−1(
G−1

t G t+1

)
. (6)

A. Experiments in Indoor Environments
We compare our proposed DPL-SLAM system with four

sets of state-of-the-art dynamic SLAM systems. The global
robustness and stability of each system are measured by the
root-mean-square error (RMSE) and standard deviation (S.D.)
of ATE in each set. The local performance is evaluated using
the RMSE and S.D. of the translational RPE (t.RPE) in the
first three sets and of the rotational RPE (r.RPE) in the last set.

The first set of benchmarks include two dynamic SLAM
systems based on ORB-SLAM3 (O3) [1], the RDS-SLAM [23]
(referred to as RDS), and the method proposed in [22]
(referred to as DeepLab).

As shown in Table I, our method achieves the best per-
formance in most of the sequences, except for the w/rpy
sequence, in terms of ATE. Despite DeepLab’s superior per-
formance in the w/rpy sequence, its t.RPE is inferior to ours
in all sequences. Furthermore, our method has a significant
advantage over ORB-SLAM3 in ATE. Fig. 6 demonstrates

that the trajectory estimated by our system is more accurate
than those by ORB-SLAM3 and ORB-SLAM3 added with line
features.

The second set of benchmarks are the Blitz-SLAM [20]
(referred to as Blitz), the SLAM system proposed
in [25] (referred to as SD), and the system proposed by
Du et al. [16] (referred to as LC-CRF). Like our work,
SD adopts the same dense object detection strategy based
on ORB-SLAM3. Blitz-SLAM uses the same geometric
method but employs semantic segmentation instead of object
detection. LC-CRF SLAM is a state-of-the-art pure geometric
method. The results in Table II show that our DPL-SLAM
achieves better results than other SLAM systems. The results
also demonstrate the robustness of our system in high
dynamic scenes, although it is slightly disadvantageous over
LC-CRF and SD in the low dynamic sequence.

The third set of benchmarks are OVD-SLAM [26] (referred
to as OVD), RTD-SLAM [24] (referred to as RTD), and
COEB-SLAM [27] systems (referred to as COEB). Like our
work, OVD-SLAM and COEB-SLAM have utilized semantic
and optical flow information. RTD-SLAM is a recent advanced
work that combines object detection with multiview geometric
approaches. The results in Table III indicate that overall,
despite a slight gap between our system and OVD-SLAM
in the low dynamic sequence s/xyz, our DPL-SLAM has
achieved better performance compared to other SLAM sys-
tems. This demonstrates the effectiveness of our method and
its advantages over the others. The last set of benchmarks
include the existing SLAM systems that incorporate additional
geometric information based on point-line-plane features. O3L
refers to an ORB-SLAM3 system that only adds line fea-
tures without handling dynamic objects. Planar represents an
advanced system that integrates point-line-plane features [34],
while DRG stands for the most advanced point-line-plane
feature integration system in dynamic environments [29].
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Fig. 6. Contrast of trajectories obtained from ORB-SLAM3, ORB-SLAM3 plus lines features and our system against the real ground-truth trajectory.
(a) walking/half. (b) walking/rpy. (c) walking/static. (d) walking/xyz. (e) sitting/half. (f) sitting/xyz.

TABLE III
COMPARISON BETWEEN OUR DPL-SLAM AND THE LATEST SLAM SYSTEMS

TABLE IV
COMPARISON BETWEEN OUR DPL-SLAM AND THE EXISTING SLAM SYSTEMS USING PLANES OR LINES AS FEATURES

According to the results in Table IV, our system does not
perform well in the s/half and s/xyz sequences due to
a lack of surface geometric information, but it achieves

state-of-the-art performance in other sequences, especially
in high dynamic sequences, where our performance has a
significant advantage.
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Fig. 7. Comparison of the trajectory from our proposed system
with the advanced system’s trajectory against the ground truth in the
w/xyz sequence. Sequence (a) is the result of SD-SLAM operation, and
sequence (b) is the result of our proposed system.

TABLE V
COMPARISON OF COMPUTATION TIME IN TUM DATASET [ms]

To rigorously prove that our proposed system is more
effective than the latest visual SLAM system and has better
camera pose recovery accuracy, we also conduct a set of tra-
jectory experiments in the TUM’s walking/xyz high dynamic
sequence and make comparison with SD-SLAM [25]. Fig. 7(a)
shows the experimental results of SD-SLAM and Fig. 7(b)
displays the results of our proposed SLAM system. The overall
experiment’s absolute pose error RMSE is 0.015 and 0.012,
respectively, consistent with the data in the previous table. The
comparison charts show that the statistical data we collected
on this sequence, including S.D., RMSE, mean, and median,
are all lower than the experimental results of SD-SLAM.
Moreover, the peak of our ATE is also lower than SD-SLAM’s
ATE, indicating that our proposed system is more robust in
the experimental environment than the latest dynamic SLAM
systems. Additionally, we can see significant peak fluctuations
in the ATE curve around 8 and 18 s. This may be due to the
presence of two people in the image simultaneously in the
dataset, and when the dynamic ratio occupies a major part,
the number of features extracted in the remaining static area
might be insufficient.

Additionally, as shown in Table V, we compared the
average per-frame processing time of our system with the
state-of-the-art SLAM systems on the TUM dataset. O3 refers

to ORB-SLAM3, RTD refers to [24], RDS represents [23],
OVD denotes [26] (referring to OVD-SLAM), and COEB
refers to [27]. Although RDS has the highest processing
speed, its performance in dynamic environments is far from
comparable to our system. OVD, COEB, and our system all
utilize Yolov5 and optical flow algorithms for dynamic object
processing. OVD is faster than our system by 3 ms because it
does not compute the fundamental matrix, but only calculates
the optical flow vectors. However, OVD’s performance is not
as good as ours in most sequences. Despite adding a module
for feature line extraction, our system achieves the best balance
between processing speed and accuracy. This also proves that
our system can operate in real time.1

B. Experiments in Outdoor Environments
We benchmark our method against advanced outdoor

techniques like PLDS-SLAM [28], SD-SLAM [25], Optical-
SLAM [36], Dynamic SLAM [37], and DynaSLAM II [38],
and report the RMSE of ATE across ten sequences for each
system in Table VI. PLDS-SLAM, similar to ours, adapts
ORB-SLAM3 for dynamic environments with point-line sys-
tems, and SD-SLAM utilizes dense object detection and
optical flow for outlier detection. Optical-SLAM, like ours,
utilizes optical flow for motion modeling, but it employs a geo-
metric approach to acquire target bounding boxes. Dynamic
SLAM employs semantic segmentation and scene flow to
identify dynamic feature points. DynaSLAM II is an object
visual SLAM that tracks moving objects using instance seg-
mentation and jointly optimizes pose estimation. In the table,
O3 denotes ORB-SLAM3 [1] as a baseline system, O3L adds
line features to O3 without removing any dynamic point or
line features. Our results are averaged from ten experiments,
excluding outliers, while results for other methods follow their
original reports.

Our approach improves trajectory estimation accuracy over
ORB-SLAM3, with ATE that is 10%–15% lower across almost
all sequences. Our system performs particularly well in the
three static sequences (02, 07, 08) of rural areas, thanks to
incorporating the point-line features, epipolar constraints, and
LK optical flow consistency checks. Our method retains the
point-line features of stationary vehicles, even in potential
dynamic areas, and achieves robust performance on sequences
01, 03, and 04 captured in dynamic environments, underscor-
ing its effectiveness.

In our experiments, we have eliminated features on moving
car objects to remove their interference. As can be seen
in Fig. 8, our system does not simply use a semantic algorithm
to judge if each bounding box is in motion mechanically.
Instead, it further utilizes bounding box-based optical flow
epipolar constraints for judgment. Under various lighting
conditions and traffic densities, our DPL-SLAM system can
effectively identify moving objects in the environment. Our
system can detect vehicles driving on the road and static
vehicles parked on the sides of the road. As shown in the first
row of Fig. 8(c), features that do not satisfy the constraints are

1Real time in our article refers to the case when the time of processing
images by the robot is same as the human brain’s, i.e., 100 ms per frame [35].
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TABLE VI
COMPARISON OF THE KITTI DATASET’S MEAN ATE BY USING OUR SYSTEM AND THE TOP VISUAL SLAM SYSTEMS

Fig. 8. Schematic of our method in the outdoor KITTI experiment.
(a) Result of image processing by ORBSLAM3. (b) Result of image
processing by our proposed system. (c) Magnified view of the details
of the processing effect in (b).

considered dynamic. Feature points that fall on the body of the
“Audi” car in motion are indicated by large solid pink circles,
indicating that these point features are dynamic and have
been discarded, not participating in tracking. Although we
define all semantic classes in the scene as potentially dynamic,
as shown in the second row of Fig. 8(c), feature points on
static cars parked at the roadside are still retained. This
adequately demonstrates that our system does not rely heavily
on object detection algorithms but can effectively distinguish
between dynamic and static features. It retains valid static
features in the scene to the greatest extent and then performs
effective tracking to recover an accurate camera pose. This is
particularly important in complex traffic scenarios. Our system
has strong generalization capabilities across different scenes
and robustness in unfamiliar and complex environments.

C. Robustness Test in Real Environment
To evaluate our method in a real-world environment, we uti-

lize an Intel D435i RGBD camera to record camera sequences,
with ground truth provided by our system in the same but
static environment with the same movement pattern. Doing
so demonstrates our method’s effectiveness in handling real
dynamic scenes and proves that our method can more effec-
tively utilize geometric information in space. During the

Fig. 9. Experiment in a real-life scene. Our method successfully
detects dynamic points belonging to known objects (people) and limited
unknown moving objects (Chair). (a) Represents the input RGB image,
(b) represents the feature extraction process, and (c) represents the
dynamic point detection process.

experiment, the camera is kept static and a person appears in
front of the camera and exits, then rotates the stationary chair.
Fig. 9 illustrates the results of the moving point elimination
algorithm. Fig. 9(a) shows the original image information
in the dynamic sequence, Fig. 9(b) shows the results after
extracting the point lines and object features, and Fig. 9(c)
shows the results after applying our moving object judgment
algorithm.

As shown in Fig. 9(b), when dynamic feature elimination
does not function, the system will extract feature points from
the moving human body and the rotating chair for matching,
which introduces significant errors in the pose estimation
between frames, leading to camera tracking failure. Fig. 9(c)
demonstrates that our method can effectively eliminate feature
points on the dynamic human body while preserving sufficient
static features for pose recovery. When the chair rotates
under the action of external forces, our algorithm can identify
dynamic features in the scene, which are represented by solid
pink circles in the image.

Additionally, we have qualitatively evaluated the perfor-
mance of three algorithms in real-world scenarios. Fig. 10
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Fig. 10. Contrast of trajectories obtained from ORB-SLAM3, ORB-
SLAM3-Lines, and our system in real environment.

Fig. 11. (a) Depth map, (b) original image, (c) sparse point cloud
reconstruction, and (d) point-line reconstruction in the experimental
environment. The depth map is acquired by the motion capture system,
the sparse point cloud is reconstructed by ORBSLAM3, and the sparse
point-line map is reconstructed by our system.

shows the deviation from the ground of ORBSLAM3,
ORBSLAM3 with line features, and our system in different
directions (x , y, z axes). It can be seen from Fig. 10 that the
original ORB-SLAM3’s pose estimation significantly deviates
from the true value at around 23 s. This is when a person
has just entered the camera’s field of view. At the same time,
benefiting from the dynamic feature removal algorithm, our
system’s pose estimation fluctuates very little. At 38 s, a chair
is rotated due to an applied force. It is visible that around this
time, the trajectory of ORB-SLAM3 is significantly disturbed
by the moving object, with a noticeable increase in the offset
in all three directions. However, our proposed system can
handle these objects well and recover the accurate camera
pose. In addition, by incorporating lines as part of the tracking
in feature extraction, we can also improve the accuracy of

camera pose recovery. Moreover, as shown in Fig. 11(c),
the sparse point cloud map generated by the ORB-SLAM3
system cannot capture much effective information about the
environment, while in our proposed DPL-SLAM system, the
surrounding environment’s general outline can be constructed
using both the texture and structural information. This can
help machines better understand their surroundings to perform
more advanced robotic tasks. Data from Fig. 10 indicates
that ORB-SLAM3 is severely disturbed by dynamic objects
in practical situations, with trajectory estimation deviating
significantly. In contrast, our method aligns more closely with
the ground-truth trajectory and has better stability. Moreover,
the point-line map constructed by the system can effectively
utilize the structural and texture information, facilitating the
agent’s perception and understanding of the environment.

V. CONCLUSION

We present a robust point-line SLAM system tailored for
dynamic environments, proficient in handling known and
unknown dynamic objects. Extensive evaluations demonstrate
the superiority of our system in accuracy and real-time per-
formance, notably due to the use of denser semantic objects.
This showcases that our DPL-SLAM system can better help
generate comprehensive, enduring semantic maps in dynamic
contexts, thereby enabling complex robotic tasks [39], [40].
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