
Citation: Lin, Z.; Tian, Z.; Zhang, Q.;

Zhuang, H.; Lan, J. Enhanced Visual

SLAM for Collision-Free Driving

with Lightweight Autonomous Cars.

Sensors 2024, 24, 6258. https://

doi.org/10.3390/s24196258

Academic Editor: Yasufumi Enami

Received: 16 August 2024

Revised: 23 September 2024

Accepted: 25 September 2024

Published: 27 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Enhanced Visual SLAM for Collision-Free Driving with
Lightweight Autonomous Cars
Zhihao Lin 1,† , Zhen Tian 1,† , Qi Zhang 2, Hanyang Zhuang 3 and Jianglin Lan 1,*

1 James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK;
2800400l@student.gla.ac.uk (Z.L.); 2620920z@student.gla.ac.uk (Z.T.)

2 Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
q.zhang2@uva.nl

3 University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University,
Shanghai 200240, China; zhuanghany11@sjtu.edu.cn

* Correspondence: jianglin.lan@glasgow.ac.uk
† These authors contributed equally to this work.

Abstract: The paper presents a vision-based obstacle avoidance strategy for lightweight self-driving
cars that can be run on a CPU-only device using a single RGB-D camera. The method consists
of two steps: visual perception and path planning. The visual perception part uses ORBSLAM3
enhanced with optical flow to estimate the car’s poses and extract rich texture information from the
scene. In the path planning phase, the proposed method employs a method combining a control
Lyapunov function and control barrier function in the form of a quadratic program (CLF-CBF-QP)
together with an obstacle shape reconstruction process (SRP) to plan safe and stable trajectories. To
validate the performance and robustness of the proposed method, simulation experiments were
conducted with a car in various complex indoor environments using the Gazebo simulation environ-
ment. The proposed method can effectively avoid obstacles in the scenes. The proposed algorithm
outperforms benchmark algorithms in achieving more stable and shorter trajectories across multiple
simulated scenes.

Keywords: autonomous car; obstacle avoidance; SLAM; vision-based navigation

1. Introduction

In recent years, there has been an increasing demand for autonomous vehicles in
complex indoor environments. Compared with drones, autonomous cars can perform a
variety of ground transportation tasks while maintaining good stability. To avoid causing
damage to the items being transported, it is crucial for unmanned vehicles to remain
stable under all circumstances. Therefore, these vehicles should be equipped with obstacle
avoidance algorithms to perform effectively in hazardous situations such as the sudden
appearance of moving obstacles, tight corners, and narrow corridors. However, the existing
algorithms [1–3] face various practical issues. Unmanned vehicles are often limited by
heavy sensors (Radar, LiDAR, etc.), which can lead to short battery life, high costs, and large
sizes, limiting the use cases and performance of these algorithms. Thus, choosing the most
suitable sensors for unmanned vehicles is a critical task. Unmanned vehicles are often
limited by heavy sensors (Radar, LiDAR, etc.), which can lead to short battery life, high
costs, and large sizes, limiting the use cases and performance of these algorithms. Thus,
choosing the most suitable sensors for unmanned vehicles is a critical task.

Common sensors used for these tasks include ultrasonic sensors, LiDAR, and cameras.
Ultrasonic sensors excel at measuring short-range obstacles, but their accuracy decreases
with distance. LiDAR sensors offer rich information, high precision, long range, and a
wide field of view, but are expensive and heavy, reducing unmanned vehicles’ flexibility.
In contrast, cameras provide extensive scene information with low power consumption,

Sensors 2024, 24, 6258. https://doi.org/10.3390/s24196258 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24196258
https://doi.org/10.3390/s24196258
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0005-8152-3886
https://orcid.org/0009-0009-2962-6334
https://orcid.org/0000-0001-6668-9523
https://orcid.org/0000-0001-9057-5649
https://doi.org/10.3390/s24196258
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24196258?type=check_update&version=1

Sensors 2024, 24, 6258 2 of 18

compact size, and affordability. Therefore, developing high-precision algorithms based on
camera sensors is of significant practical importance.

Recent advancements in autonomous navigation have made significant progress,
but challenges remain, especially for lightweight vehicles in complex environments. State-
of-the-art methods can be broadly categorized into two approaches:

(1) Deep learning-based methods: Works such as [4,5] utilize neural networks for informa-
tion extraction from cameras. While highly accurate, they require substantial computa-
tional resources, including GPUs, limiting their applicability on lightweight platforms.

(2) Traditional feature-based methods: vision-based SLAM using feature extraction can
operate on CPU-only platforms but often lack the necessary accuracy for reliable
navigation in complex scenarios.

Many works utilize deep learning to extract information from cameras [4,5]. These
methods require high-performance computing boards with GPUs to run the algorithms,
which are not suitable for lightweight small vehicle platforms. Vision-based Simultaneous
Localization and Mapping (SLAM) using feature extraction methods can run on CPU-only
platforms, obtaining the map information of the scene to make more precise decisions and
estimating the necessary pose information for the vehicle. However, additional information
is still needed to enhance the SLAM system’s accuracy.

When the environment is entirely constructed by perception technologies in real-time,
trajectory planning for the moving vehicle is necessary. Trajectory planning is a challenging
module, as there are requirements from both the moving vehicle and the environment.
From the vehicle’s perspective, the trajectory must be stable to ensure good stability and
comfort. i.e., avoiding damping and sharp changes. From the environment’s perspective,
there is a series of obstacles that increase the risk of collision. Therefore, a method that
addresses both stability and safety is needed. Control Lyapunov function (CLF) with
stability constraints can be combined with the control optimization process to enhance the
stability of the control system. Control barrier function (CBF) is used in RGB-D space to
improve driving safety [6]. CLF-CBF-QP is used to ensure the stability and safety of mobile
car trajectory planning [7].

Recent works predominantly utilize depth maps and poses estimated via odometry
as inputs for corresponding path-planning tasks [5,8–11]. These approaches often rely on
IMUs, GPS, or LiDAR for pose calculation. Meanwhile, pose and depth estimation cannot
be effectively globally optimized together, which fails to handle the noise introduced by
depth estimation and odometry. This significantly impairs the performance of the planners.
Some research employs deep learning to reduce uncertainty in depth estimation and uses
reinforcement learning to deal with the noise in inputs [5,8], but it places higher demands
on the GPUs and CPUs onboard the vehicles. This restricts the application of such works
in scenarios with limited computational resources.

To address these limitations and advance the state-of-the-art in autonomous navigation
for lightweight vehicles, the proposed method improves enhanced visual SLAM with ad-
vanced trajectory planning. The proposed approach offers the following key advancements:

This paper proposes a new autonomous obstacle avoidance algorithm for lightweight
self-driving cars. The state-of-the-art visual SLAM algorithm ORBSLAM3 is used to perceive
the scene, and its performance is enhanced by eliminating outliers with optical flow epipolar
constraints. ORB-SLAM3 is capable of joint optimization of pose and 3D mapping using
only the CPU, and it can merge submaps to achieve real-time reconstruction of large-scale
scenes whilst storing their 3D maps. Based on the rich pose and 3D information of the scene
obtained, a new autonomous obstacle avoidance algorithm for lightweight self-driving cars is
proposed. The proposed method employs a trajectory generation method combined with an
obstacle shape reconstruction process (SRP) in irregular-shaped environments (CLF-CBF-QP-
SRP) for global planning. Global planning trajectories with safety and stability can provide
a general reference trajectory for self-driving cars, together with local planning using TEB
(Timed Elastic Band) for local planning to ensure avoiding the local collisions. The proposed

Sensors 2024, 24, 6258 3 of 18

method can effectively avoid obstacles in the scene whilst minimizing unnecessary movement.
The contributions of this work are summarized as follows:

• Development of a lightweight, single-camera-based visual SLAM system enhanced
with optical flow for outlier culling, capable of perceiving rich environmental informa-
tion and avoiding obstacles efficiently on CPU-only platforms.

• Introduction of a novel path planning algorithm for irregular environments, combining
CLF-CBF-QP-SRP for global planning with TEB for local planning, achieving robust
collision-free navigation to various target points.

• Enhancement of trajectory generation robustness through a unified approach that
ensures dynamic stability and safety throughout the entire movement, from the initial
point to the target point.

• Comprehensive evaluation and comparison with state-of-the-art methods, demon-
strating superior performance in generating safe, stable, and efficient trajectories for
lightweight autonomous vehicles in complex indoor environments.

Through extensive simulations and comparisons with existing methods, exhaustive
experiments demonstrate that the proposed approach outperforms current state-of-the-art
techniques in terms of computational efficiency, trajectory stability, and obstacle avoidance
capability for lightweight autonomous vehicles.

2. Related Works
2.1. Geometric Methods Enhanced SLAM Approach

Visual SLAM has been improved through a series of geometric techniques. Sun
et al. [12] used additional optical flow information and a foreground model based on depth
maps to eliminate outliers in the scene. Cheng et al. [13] employed the fundamental matrix
to enhance the additional information provided by the LK sparse optical flow to further
increase the algorithm’s ability to outliers.

Recent work [14] has utilized the relationships between points to filter stable data
associations in the scene, and ref. [15] used multi-frame rather than single-frame historical
observations to further identify outliers in the scene. However, these techniques do not
address outliers in certain specific scenes and are usually limited to certain types of cameras.
In addition, some works [16–18] have introduced a significant amount of navigation-
irrelevant information and often involve lengthy processing times.

ORB-SLAM3 represents a significant advancement in visual SLAM systems, offering
robust performance with minimal computational requirements. Unlike deep learning-
based approaches, ORB-SLAM3 employs fast ORB feature extraction and binary descriptor
matching, enabling real-time performance even on CPU-only platforms. The system also
supports multi-map and multi-session capabilities, which allow for efficient map reuse
and reliable loop closure. Additionally, ORB-SLAM3 incorporates visual-inertial odometry
to enhance robustness in challenging environments, while efficient bundle adjustment
and pose graph optimization ensure accurate trajectory estimation. These characteris-
tics make ORB-SLAM3 particularly suitable for lightweight autonomous vehicles, where
computational resources are limited but real-time performance remains essential.

2.2. Trajectory Generation Methods

The process of path planning is important for moving robot cars to reach the target
point safely and with good stability. A series of methods are proposed for the trajectory
generation [19], such as rapid random tree (RRT) and the Voronoi diagram-based method.
RRT can be used to solve motion planning problems for robots to move from one state to
another whilst avoiding obstacles by generating a space-filling tree to effectively find an
optimal path. However, RRT has a major limitation that the solution may not be optimal,
as the convergence rate is uncertain. Therefore, some adjusted versions of RRT are proposed,
such as [20]. A Voronoi diagram-based method for trajectory planning is proposed in [21],
with simplicity, versatility, and efficiency. Ref. [22] uses the Voronoi diagram-based method
combined with a roadmap to find the shortest path. Ref. [23] uses the Voronoi diagram to

Sensors 2024, 24, 6258 4 of 18

exclude collisions in the free space. Ref. [24] uses the Voronoi diagram to generate a safe path
among the road map. However, the performance of the Voronoi diagram heavily relies on cell
distribution. In areas with sparse cells, the effectiveness of the Voronoi diagram diminishes.

Other techniques, like the use of artificial potential field (APF) in [25], for trajectory
planning with multiple obstacles have also been implemented. By using the attractive
and repulsive force fields on the target point and obstacles, APF guides the vehicle to the
target point. A framework that combines the APF with reinforcement learning is proposed
in [26], achieving collision avoidance with dense obstacles. However, the main problem
of APF is the unstable trajectory, as the state of the car is affected by the joint force of
the attractive and repulsive force fields. In contrast to other route planning algorithms,
CBF is effective for collision avoidance and enhancing safety, while CLF contributes to the
stability of nonlinear systems [27]. Thus, their combination promises both collision-free and
stable navigation. Moreover, to address a variety of scenarios, local planning is essential to
correct any discrepancies introduced by global planning. Hence, TEB [28], recognized for
its proficiency in local route planning, is well-suited for this role.

3. System Overview

As shown in Figure 1, the proposed system uses visual sensors to map the environment
in advance to obtain spatial boundary and obstacle information. During the process of path
planning and navigation, the proposed method utilizes images captured by the car’s camera
to generate feature points through descriptor matching. The epipolar constraints of the LK
optical flow [29] are used to filter and remove outliers from the scene. Finally, the proposed
method uses the relocation algorithm to obtain the current location and attitude information
of the car. When the car is moving, the proposed method uses the ORB-SLAM3 algorithm
to update the car’s pose information in real time. After the navigation coordinate points are
completely set, the system will use the pre-known static cost map for inflation. For global
path planning, the proposed method uses CBF to update the relative distance between
obstacles and the car in real time to achieve autonomous obstacle avoidance. For complex
terrain and new obstacles, the autonomous car uses the Timed Elastic Band (TEB) [28] local
planning algorithm to plan the car’s path locally and use the constraints between the car
and surrounding obstacles to speed up iterations to find the optimal path.

Figure 1. The proposed system workflow. This system comprises two main components: environment
perception and path planning. Initially, a PGM map and cost map are constructed. The vehicle, equipped

Sensors 2024, 24, 6258 5 of 18

with a visual sensor, extracts point features from the environment and uses relocation to ascertain
its position and identify obstacles. A static map is inflated for navigational safety. The vehicle’s
pose is dynamically updated by tracking map points, and a global path is mapped using CBF.
For local path planning, the TEB algorithm is employed. The system updates the vehicle’s pose in
real-time, calculates safe passage areas with CBF, and facilitates optimal, obstacle-free path selection
to the destination.

3.1. Perception Based on Vision

Compared with LiDAR, visual sensors have the advantages of low cost and small
size and are widely used in various autonomous driving platforms. This article uses
a visual SLAM system based on a RGB-D camera as shown in Figure 2, which ensures
positioning accuracy and saves costs, facilitating subsequent deployment on low-cost
unmanned vehicles and realizing the project as soon as possible.

Figure 2. The Intel D435i RGB-D camera utilizes the structured light triangulation method for
depth sensing.

Point Features Matching and Attributes Updating

A descriptor is a compact representation of a feature point’s local appearance, typically
a binary or floating-point vector. In this context, desc(.) represents the function that
computes this descriptor for a given point. The proposed method employs a comprehensive
point feature-matching methodology for stereo camera configurations. The initial step
involves identifying point features from the last frame and current from the RGB-D camera
that share the same “grid ID” of these points. Each point feature is assigned a unique
“grid ID” based on its spatial locality, facilitating the association of features between frames.
To ensure temporal consistency, the algorithm matches features by comparing descriptors
and selecting the closest match based on the minimal Euclidean distance:

Distance = min
j
‖descprev(i)− desccurr(j)‖ (1)

where descprev(i) and desccurr(j) are descriptors of points from previous and current
frames, respectively. Further validation is performed by examining the cosine similarity of
the angle between the direction vectors of matched points, ensuring the matched points
align accurately with the expected motion model.

Cosine Similarity = cos−1
(

~vprev ·~vcurr

‖~vprev‖‖~vcurr‖

)
(2)

Sensors 2024, 24, 6258 6 of 18

where ~vprev and ~vcurr are the direction vectors of points in consecutive frames. The point
feature matching process among consecutive frames is visualized in Figure 3. In the figure,
Tk−1,k ∈ SE(3) represents the relative pose transformation between frames or the last and
current image frames. Point features in 3D space, defined by a point Bj and another point
Fj, result in two points: the point ai and another point fi when projected onto the image
coordinate system Ik−1 at time t− 1. At the time t, the same point projected onto the image
coordinate system Ik results in new points: point a′i and another point f ′i .

Bidirectional cosine similarity is used to match point pairs across frames based on
grid IDs, discarding pairs below a similarity threshold. For RGB-D camera frames, feature
points’ grayscale centroids and direction vectors will be computed, which are crucial for
pose optimization during bundle adjustment.

F
e
a
tu

re
 P

o
in

t
M

a
p
 P

o
in

t
T
e
m

p
o
ra

ry

M
a
p
 P

o
in

t

Figure 3. Illustration of the point feature matching process. Point features and their associated
descriptors (compact representations of local appearance) are matched between consecutive frames
using grid IDs, Euclidean distance, and cosine similarity to ensure alignment and temporal consis-
tency. Solid lines represent the connections between the map points projected onto the 2D plane in
the previous frame and the feature points, while dashed lines represent the connections between the
map points projected onto the 2D plane in the current frame and the feature points.

3.2. Outlier Features Removing

In the proposed SLAM system, the proposed method mitigates the impact of inconsis-
tent feature points on pose estimation by implementing the Lucas–Kanade (LK) method to
enforce epipolar constraints, guided by the fundamental matrix F. This ensures geomet-
rically coherent feature point pairs by setting a threshold distance from the epipolar line,
allowing us to filter out mismatches. This fusion of techniques bolsters system stability.

To refine feature selection, the proposed algorithm eschews traditional Harris cor-
ner [30] matches in favor of those with lower disparity in central pixel blocks. The proposed
method then applies a stringent distance metric to eliminate outliers, which is central to
the precision of the proposed algorithm.

For rigor, the RANSAC algorithm [31] is employed to extract the fundamental matrix
F that maximizes inlier correspondences. With this matrix, features are extracted from one
frame to their epipolar counterparts in the subsequent frame.

Consider matched points p1 and p2 in consecutive frames with homogeneous coor-
dinates P1 = [u1, v1, 1]> and P2 = [u2, v2, 1]>, respectively. The epipolar line L1 for P1 is
obtained as L1 = FP1. The distance to the epipolar line is defined as

D =
|P>2 FP1|√

F2
row1 + F2

row2

(3)

where F, Frow1, and Frow2 represent the fundamental matrix, the first and second rows of
the fundamental matrix F, respectively. Points with D exceeding a predefined threshold
are deemed outliers and discarded.

Sensors 2024, 24, 6258 7 of 18

3.3. Point Features Optimizing Algorithm

In 3D visual SLAM systems, map point features play a critical role in environment
modeling and localization. However, factors like sensor noise and dynamic environments
can induce errors in the orientation and position of these features. To address this, the pro-
posed method adopts an optimization-based reference keyframe pose correction method to
enhance the accuracy and consistency of map point features.

Sim3 (Similarity Transform in 3D) is a seven-dimensional transformation that includes
rotation, translation, and scale. It is used here to represent the relationship between different
coordinate frames. The process of pose correction is detailed as follows: Let Rwr and twr
represent the rotation matrix and the translation vector from the reference keyframe to the
world coordinate system, respectively. The world coordinates of the map point features
to be corrected are assumed to be P3Dw, with P3Dwsp denoting the coordinate of the point
feature. The Sim3 transformation matrices Srw and corSwr are used to transform the pose
of map point features from the reference keyframe of the current frame to the corrected
reference keyframe as follows:

CorP3Dwsp
= corSwr× (Srw × P3Dwsp

) (4)

where× denotes matrix multiplication, and CorP3Dwsp represents the coordinates of the cor-
rected map point feature in the corrected reference keyframe coordinate system. Enhancing
the precision of these transformations directly impacts the accuracy of the camera pose and
the overall SLAM performance. By refining the keyframe poses through these corrections,
the proposed method effectively reduces the impact of positioning errors caused by sensor
noise and dynamic environmental factors. This sets a robust foundation for subsequent
optimization processes such as motion-only bundle adjustment (BA).

Motion-only BA optimizes the camera orientation R ∈ SO(3) and position t ∈ R3,
by minimizing the reprojection error between matched 3D points X′i in world coordinates
and their corresponding image keypoints x′i , which may be either monocular xi

m ∈ R2 or
stereo xi

s ∈ R3, with i ∈ Λ the set of all matches, as follows:

{R, t} = arg min
R,t

∑
i∈Λ

ρ
∥∥x′i − πd

(
RX′i + t

)∥∥2
Σ (5)

where ρ is the robust Huber cost function, and Σ represents the covariance matrix related to
the scale of the keypoint. The optimization problem in Equation (5) is typically solved using
iterative nonlinear least squares methods, such as the Levenberg–Marquardt algorithm.
This method is particularly effective for bundle adjustment problems due to its ability to
handle the sparsity of the Jacobian matrix efficiently. And πd is the projection function for
RGB-D cameras defined as

πd

X
Y
Z

 =


fx

X
Z + cx

fy
Y
Z + cy

Z

 (6)

where [X, Y, Z]> represent the coordinates of a point in the world coordinate system. X
Z

and Y
Z are the normalized image plane coordinates. fx and fy are the focal lengths of the

camera along the X and Y axes, respectively. cx and cy are the coordinates of the principal
point, typically at the center of the image. Z is the depth value directly measured by the
RGB-D sensor, providing real-time depth at each image pixel.

Local BA optimizes a subset of covisible keyframes KL and all points observed in
those frames PL. Non-optimized keyframes KF, while fixed during optimization, contribute
observations of PL, adding constraints to enhance map stability without altering their

Sensors 2024, 24, 6258 8 of 18

poses. Define λk as the set of matches between points in PL and keypoints in keyframe k.
The optimization is formulated as follows:

{Xi, Rl , tl | i ∈ PL, l ∈ KL} = arg min
Xi ,Rl ,tl

∑
k∈KL∪KF

∑
j∈λk

ρ(Ekj) (7)

where Xi represents the 3D position of the i-th point in PL. Rl and tl are the rotation matrix
and translation vector for the l-th keyframe in KL. Reprojection error Ekj is quantified as

Ekj =
∥∥∥x′j − πd(RkXi + tk)

∥∥∥2

Σ
(8)

where x′j represents the 2D projection coordinates of the j-th feature point on the image plane.
The optimization problem involving Equation (8) is part of the larger Local BA process,
which is typically solved using sparse bundle adjustment techniques. These methods, often
implemented using libraries such as g2o or Ceres Solver, exploit the problem’s sparsity
structure to efficiently optimize over multiple keyframe poses and 3D point positions
simultaneously. In contrast to Local BA, Full BA adjusts all keyframes and map points,
except the origin keyframe, which remains fixed to resolve scale ambiguity. This extensive
optimization ensures the highest accuracy by refining camera poses and landmark positions
across the entire map based on all available visual information.

3.4. Global Path Planning by Using CLF-CBF-QP-SRP

In this section, two key concepts are introduced for designing a safe and stable control
system: control Lyapunov function (CLF) and control barrier function (CBF). A CLF is a
positive definite function that decreases along the trajectories of the system and can be
used to ensure asymptotic stability of a desired equilibrium point. A CBF is a function that
satisfies some conditions on its Lie derivatives and can be used to enforce state constraints
in the operating space. By combining CLF and CBF, a control law can be designed that
guarantees both safety and stability of the car.

3.4.1. Vehicle Model

To simplify the computation during the trajectory generation, a kinematic model [26]
is used. The kinematic model is governed by

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = ω

(9)

where v denotes the velocity of the vehicle, x and y denote the longitudinal and lateral
coordinates of the vehicle’s midpoint, ω is the angular velocity of the vehicle, and θ is the
course angle of the vehicle.

3.4.2. The Formulation of CLF

To generate a stable trajectory for a moving car, the vehicle model is written as the
following nonlinear control system:

ṡ = f (s) + g(s)u (10)

where s ∈ Rn is the state of the moving car, and u ∈ Rm is the control input. Functions f
and g are smooth vector fields. The control input is subject to the following constraints:

u ∈ U ⊂ Rm := {u|umin ≤ u ≤ umax} (11)

Sensors 2024, 24, 6258 9 of 18

where U is the admissible input set of the control system. umin and umax are the minimum
value and maximum value of inputs. Definition 1 combines an affine constraint with u to
achieve an optimization-based controller.

Definition 1. Assume V is a Lyapunov function when the following condition is satisfied [27]:

inf
u∈U

[
L f V(s) + LgV(s)u

]
≤ K(V(s)) (12)

where L f V(s) and LgV(s) are the Lie-derivatives of V(x) and K() is a class K function. The class
K function is a function k : (0, p]→ (0, ∞] with the property of strictly increasing and the initial
value k(0) = 0. Then s can be stabilized by the following equation:

KCLF(s) :=
{

u ∈ U , L f V(s) + LgV(s)u ≤ K(V(s))
}

. (13)

3.4.3. The Stability Control of Moving Car Using CLF

As the basic formulation CLF is introduced in (13), the problem is to combine CLF
with the dynamics of the moving car. Assume the current position of the moving car is
pc = (xc, yc, θc) and the target position is pt = (xt, yt, θt). The error between the current
position and the final position, e = [xc − xt, yc − yt, θc − θt], can be used for building the
CLF as follows:

V(s) = ePeT (14)

where P is a 3 × 3 symmetric matrix with five parameters used to ensure that the V(s) is
positive definite. The format of P in this paper is formulated as

P =

p1 0 p2
0 p3 p4
p2 p4 p5

. (15)

Therefore, (10) can be transferred to the format suitable for the target of the moving car.

3.4.4. The Formulation of CBF

CBF is used for the collision-free control, together with CLF for stability. A set D is
defined as composing a continuously differentiable function h: Z ⊂ Rn → R, yielding

D = {s ∈ Z ⊂ Rn : h(s) ≥ 0},
∂D = {s ∈ Z ⊂ Rn : h(s) = 0},

Int(D) = {s ∈ Z ⊂ Rn : h(s) > 0},
(16)

where D is the set that achieves collision-free.

Definition 2. The nonlinear control system is safe if D is forward invariant. Assume T is the time
interval. The setD is forward invariant when each s0 ∈ D, x(nT) ∈ D for s(0) = x0, ∀n ≥ 0 [32].

Definition 3. The function h is a CBF defined on the set Z if there exists an extended class K∞
function α such that the nonlinear control system satisfies [27]:

sup
u∈U

[L f h(s) + Lgh(s)u] ≥ −α(h(x)) (17)

where L f h(s) and Lgh(s) are Lie-derivatives of h(s).

The set of controls that allow D to be collision-free for all s ∈ Z is formulated as

Kcbf(s) := {u ∈ U , L f h(s) + Lgh(s)u ≥ −α(h(s))}. (18)

Sensors 2024, 24, 6258 10 of 18

3.4.5. Safe Control of Moving Car Using CBF

In this paper, all obstacles are considered to be static with square shapes, in contrast to
the regular circular shapes used for CBF calculations. While the initial approach simplified
obstacles as squares, a more nuanced method is employed to accurately represent and
avoid obstacles of various shapes. The obstacle shape reconstruction process begins with
point cloud generation, where the RGB-D camera provides a set P = {p1, p2, . . . , pn} of
points representing obstacle surfaces in the environment. These points are then clustered to
identify distinct obstacles, with each cluster Ci representing a potential obstacle. For each
cluster Ci, a convex hull Hi is computed to approximate the obstacle’s shape, defined by
a set of vertices Vi = {v1, v2, . . . , vm}. Based on these convex hulls, barrier functions are
constructed for each obstacle. Specifically, for each convex hull Hi, a barrier function hi(s)
is formulated as

hi(s) = min
j=1...m

(
(s− vj)

Tnj − dsafe

)
, (19)

where s is the vehicle state, vj are the vertices of the convex hull, nj are the outward-facing
normal vectors of the hull faces, and dsafe is a safety distance. This formulation ensures
that hi(s) > 0 when the vehicle is outside the obstacle (plus safety distance) and hi(s) ≤ 0
when it’s inside or on the boundary. The overall barrier function for all obstacles is then
defined as

h(s) = min
i

hi(s). (20)

This approach allows for more accurate representation and avoidance of obstacles
with complex shapes. To compute CBFs, the SRP (Specific Required Parameter) of each
obstacle must be determined. As illustrated in Figure 4, a circle is used to enclose the ith
obstacle, whose radius is calculated as

ri =

√(
li
2

)2
+
(wi

2

)2
(21)

where li and wi are the length and width of the ith obstacle. To reach the target point in an
open space, acquired by the perception stage, there is a moving car together with a set of
N obstacles. Each obstacle is represented by Oi ∈ O = {O0, O1, . . . , ON−1}. Assume the
position of the obstacle Oi is denoted by zOi = (xOi , yOi), thus (17) is converted to

sup
u∈U

[
L f hi(s) + Lghi(s)u +

∂hi(s)
∂t

]
≥ −α(hi(s)). (22)

Thus, for u ∈ U , the set of controls that ensures the robot car to be safe is expressed as

Ki
cbf(s) :=

{
L f hi(s) + Lghi(s)u ≥ −α(hi(s))

}
. (23)

Figure 4. Illustration of SRP for an obstacle.

Sensors 2024, 24, 6258 11 of 18

Assuming that the robot car is defined with a safe radius of rs, the safe distance
between the car and obstacle Oi is defined as ri = rs + rOi . Then the CBF is designed as

hi(s) = (xc − xOi)
2 + (yc − yOi)

2 − r2
i . (24)

3.5. Safe and Stable Control for Self-Driving Cars

Since both the constraints of accurate and safe control have the affine form, real-time
solutions can be acquired. Therefore, a QP-based controller that combines CBFs for safety
and CLF with (13) and (23) for stability is as follows:

CLF-CBF-QP:

min
(u,δ)∈Rm+1

1
2

uT Hu + pδ2 + (u− ul)
TQ(u− ul) (25a)

s.t. L f V(s) + LgV(s)u + K(V(s)) ≤ δ (25b)

L f hi(s) + Lghi(s)u + α(hi(s)) ≥ 0, i = 0, 1, . . . , N − 1 (25c)

u ∈ U (25d)

where the objective function (25a) is divided into three parts: the first part minimizes the
magnitude of u, the second part adds an extra quadratic cost, and the third part ensures
the smoothness of u. H and Q are positive definite matrices, p > 0 is the weight coefficient
of the relaxation variable δ and ul is the control value of the last moment.

4. Experimental Evaluation

The simulations were conducted to verify the safety, stability, and efficiency of the
proposed route planning algorithm. The experiments were conducted on a Linux machine
with the Ubuntu 18.04.6 LTS OS, a 12th generation 16-thread Intel®Core™ i5-12600KF CPU,
an NVIDIA GeForce RTX 3070Ti GPU, and 16 GB of RAM. The QP problem is solved using
the quadprog solver in MATLAB R2022B.

In order to verify the effectiveness of the proposed system, a closed square experi-
mental scene is built. In order to ensure that the visual algorithm can extract a certain
number of feature points in the surrounding environment, TVs, murals, and other items
are added to the inside of the room walls. Among them, 9 square hollow tables are used
as obstacles. The feature points in the middle of such hollow objects are often not on the
obstacles but on the wall behind them. Such a scenario poses certain challenges to the
perception algorithm to test. The car is placed on the map as the carrier of the system,
rather than the car’s preset starting point. This can effectively test the effectiveness of the
proposed system’s relocation system. The car in the experiment is rectangular in shape
and has four wheels, equipped with an RGB-D vision sensor on the top of the front end.
The initial verification of the obstacle avoidance algorithm (CLF-CBF-QP) will be verified
in Matlab, and the experiments of the whole visual navigation system are carried out in
simulation environments Gazebo and Rviz. Figure 5 illustrates one experiment on how to
navigate the car from the start point to the destination.

4.1. Simulation Environments Setup

The car is placed at the starting point with coordinates (−4, −4) and the target points
with coordinates (0, 1.5). First, the car uses the visual sensor to detect the feature points in
the image, as shown in Figure 5a. After comparing it with the pre-saved atlas, it uses the
relocation algorithm to obtain the current location of the car and updates the car’s posture
and obstacle distance. Then, the velocity and direction of the car are updated by the route
planning algorithm. In order to verify the effectiveness of the proposed algorithm, CBF
was first performed on MATLAB for the motion trajectory planning test. The simulation
trajectory on MATLAB is shown in the red trajectory in Figure 5b. The proposed system
ensures that it does not encounter obstacles and selects the shortest distance between
two points. In order to further verify the effectiveness of the proposed algorithm, the ROS

Sensors 2024, 24, 6258 12 of 18

system is used to conduct further simulation tests under Ubuntu. The planned path
simulation of the car is displayed as a blue box in Rviz, where the point in the middle of
the blue box represents the trajectory of the vehicle. The blue box represents the space the
car takes up in the environment. The colored map represents costmap, which is used to
represent obstacles and passable areas in the environment. The costmap is represented
as a two-dimensional grid, with each grid cell (or pixel) colored according to the “cost”
or “safety” it represents. The meaning of the colors is as follows: Blue usually represents
low-cost areas, i.e., areas that are relatively safe and free for the robot car. Red usually
indicates very high costs and is often directly associated with obstacles. This is an area that
robot cars should avoid. Grey represents unknown areas, i.e., those areas that the robot car
has not yet explored or whose properties cannot be determined. White represents known
free areas, i.e., areas without obstructions.

Figure 5. Illustrative experiment showing the robot car’s navigation from the start to the destination.
(a) Detected feature points by the car’s vision sensor in a simulated environment, (b) ideal trajectory
planned using the proposed method in MATLAB, (c) actual path followed by the car in Rviz, (d) 3D
point cloud map of the environment generated by the proposed method, (e) starting position of the
car in Gazebo, and (f) final position of the car in Gazebo.

4.2. Stability and Safety of Trajectory Generation

The stability and safety of trajectory generation for the moving car using CLF-CBF-
QP-SRP are validated in this section through different testing target points. As shown in
Figure 6, three different testing scenarios are illustrated. Target points 1, 2, and 3 are located
at the lower right, upper right, and upper left of the center point, respectively. These three
target points are defined to test the capability of achieving stability and safety in trajectory
generation with various obstacles involved. These target points also test the adaptivity of
the proposed CLF-CBF-QP-SRP program. In each case, different states of the moving car
will be discussed.

4.2.1. Comparison with State-of-the-Art Algorithm

To demonstrate the efficient trajectory generated by the CLF-CBF-QP-SRP, target
point 2 is set as a test point to compare with a state-of-the-art algorithm called PU-RRT [33].
The PU-RRT is capable of generating safe and risk-bounding trajectories and outperforms
other adapted RRT algorithms. Therefore, this paper selects PU-RRT for comparison to

Sensors 2024, 24, 6258 13 of 18

verify the relatively more efficient trajectory using the CLF-CBF-QP-SRP while maintaining
safety. As illustrated in Figure 6b, a smooth and efficient trajectory without any collisions
among a series of candidate trajectories is chosen by the PU-RRT. However, as illustrated in
Figure 6c, the trajectory generated by the proposed CLF-CBF-QP-SRP is shorter than that
of PU-RRT. This is because the proposed method aims to find the most efficient trajectory
while avoiding collisions. Therefore, the proposed method generates a more efficient
trajectory than the PU-RRT, while both can efficiently avoid collisions with objects.

(a) (b) (c)
Figure 6. The three different destinations chosen in the experiment, and comparison of the proposed
method and PU-PRT algorithm performances for target point 2. (a) Experimental settings. (b) PU-PRT
for target point 2. (c) Comparison of the proposed method and PU-PRT.

4.2.2. Safe and Efficient Trajectory Generation for Three Target Points

Figure 7 shows the trajectory generation using the LBF-CBF-QP-SRP program from
the starting point to three target points, respectively. Figure 7a illustrates the real environ-
ment for trajectory generation. Figure 7e illustrates the detected environment by visual
perception. Figure 7b illustrates the LBF-CBF-QP-SRP-based global trajectory for target
point 1. Figure 7c illustrates the LBF-CBF-QP-SRP-based global trajectory for target point 2
in MATLAB. Figure 7d illustrates the LBF-CBF-QP-SRP-based global trajectory for target
point 3 in MATLAB. Figure 7f illustrates the final trajectory with local safe planning for
target point 1 in Rviz. Figure 7g illustrates the final trajectory with local safe planning for
target point 2 in Rviz. Figure 7h illustrates the final trajectory with local safe planning for
target point 3 in Rviz. To provide a comprehensive comparison, Figure 7b–d represent the
optimized estimated poses generated by the proposed algorithm, while Figure 7f–h depict
the true poses of the car in the simulated environment. This juxtaposition allows for a direct
comparison between the estimated and actual trajectories, demonstrating the accuracy and
effectiveness of the proposed approach. From these trajectories, it can be observed that
the moving car can avoid collisions and drive close to the boundary of reshaped obstacles,
improving the efficiency of reaching the target point. Furthermore, all the trajectories are
smooth and stable, as there is no sharp changing. The close correspondence between the
estimated and true poses further validates the reliability of the proposed LBF-CBF-QP-SRP
program in real-world scenarios. Therefore, the proposed LBF-CBF-QP-SRP program can
ensure the safety, smoothness, and stability of driving throughout the whole process.

4.2.3. Safe and Stable Control of Target Point 3

This section illustrates the states, control variables, and total CBF of all obstacles,
from the starting point to the target point, among the time axis. As illustrated in Figure 8a,
the total CBF is always larger than 0 throughout the whole time, which suggests it is
safe driving. Figure 8b shows the angular velocity of the moving car. It is obvious that
the changing of the angular velocity is smooth and with a small scale, which suggests
stability during the driving. Figure 8c elaborates on the longitudinal position x, lateral
position y, and course angle θ of a moving car. The longitudinal distance has changed with

Sensors 2024, 24, 6258 14 of 18

smoothness gradually from −4 to the point near 0, suggesting the smoothness and stability
of longitudinal driving. The lateral distance has gradually increased with smoothness
from −4 to the point near 2, suggesting the smoothness and stability of lateral driving.
The variation of θ is also smooth and reaches a stable level at the end of time, revealing the
stability of turning among the whole process.

Figure 7. Comparison of the estimated and actual trajectories from the start point to three target
points. (a) Experimental environment in Gazebo, (b) ideal trajectory from the start to target 1 planned
in MATLAB, (c) ideal trajectory from the start to target 2 planned in MATLAB, (d) ideal trajectory from
the start to target 3 planned in MATLAB, (e) 2D grid map constructed in Rviz, (f) actual trajectory
from the start to target 1 in Rviz, (g) actual trajectory from the start to target 2 in Rviz, (h) actual
trajectory from the start to target 3 in Rviz.

(a)

(b)

(c)

Figure 8. Variation of variables for target point 3. (a) Variation of CBF. (b) Variation of ω. (c) Variation
of Longitudinal Distance, Lateral Distance, and θ.

4.2.4. Comparison with Advanced Trajectory Generation Algorithm

To evaluate the performance of the LBF-CBF-QP-SRP program and enhance the validity
of the simulation results, it is compared with two benchmark trajectory generation methods:
Voronoi diagram [34] and APF [35]. As discussed in Section 2.2, these methods have

Sensors 2024, 24, 6258 15 of 18

the advantages of safety and efficiency. Therefore, they are used to be basepoints for
comparison. Figure 9 shows the trajectories generated by the three methods for three
different target points, starting from the same initial point (−4,−4). For target point 1,
the LBF-CBF-QP-SRP program produces a smooth and collision-free trajectory. However,
the APF method exhibits severe oscillation when it approaches the obstacle in the middle
of the third row, which indicates a lack of stability. The Voronoi diagram method collides
with the leftmost obstacle in the second row. Moreover, its trajectory is neither smooth
nor efficient. For target point 2, the LBF-CBF-QP-SRP program generates a smooth and
efficient trajectory, as it drives close to the boundary of the map-centered obstacle. However,
the APF method has two noticeable oscillations, with the leftmost obstacle in the third row
and the map-centered obstacle, respectively, resulting in unstable driving. The Voronoi
diagram method follows a longer trajectory than the other two methods, which implies low
efficiency. For target point 3, the LBF-CBF-QP-SRP program ensures a smooth, efficient,
and good trajectory. The APF method encounters oscillation with the leftmost obstacle
in the second row. The Voronoi diagram method makes frequent turns in some parts
of the driving, which reduces the efficiency. For the computational time, each case is
tested ten times, and the average time is calculated. The average computational times
of LBF-CBF-QP-SRP, APF, and the Voronoi diagram are 2.0176 s, 2.2723 s, and 0.0732 s,
respectively. Therefore, the computational time for planning the global trajectory of the
proposed method is relatively low.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9. Comparison of CLF-CBF-QP-SRP, APF, and Voronoi diagram for three target points. (a) CLF-
CBF-QP-SRP for target point 1. (b) APF for target point 1. (c) Voronoi diagram for target point 1.
(d) CLF-CBF-QP-SRP for target point 2. (e) APF for target point 2. (f) Voronoi diagram for target
point 2. (g) CLF-CBF-QP-SRP for target point 3. (h) APF for target point 3. (i) Voronoi diagram for
target point 3.

Sensors 2024, 24, 6258 16 of 18

4.2.5. Comparison with Deep Learning-Based Methods

To further validate the efficiency and effectiveness of the proposed enhanced vi-
sual SLAM system, a comparison with state-of-the-art deep learning-based methods was
conducted. Specifically, the proposed approach is compared with two recent deep learning-
based methods for simultaneous localization, mapping, and navigation, DS-SLAM [36]
and Blitz-SLAM [37], under the same experimental settings. Table 1 presents a quantitative
comparison of computational resource consumption and performance metrics:

Table 1. Comparison of Resource Consumption and Performance

Metric Proposed Method DS-SLAM [36] Blitz-SLAM [37]

CPU Usage (%) 45.3 78.6 82.1
GPU Usage (%) N/A 87.2 91.5
Memory Usage (GB) 2.9 4.8 5.3
Processing Time (ms/frame) 48 62 21
Localization Error (m) 0.082 0.076 0.079

N/A indicates that GPU was not used in the proposed method.

As evident from Table 1, the proposed method significantly outperforms the deep
learning-based approaches in terms of computational resource consumption. The proposed
method operates without GPU acceleration, utilizing only 45.3% of CPU resources com-
pared with the 78.6% and 82.1% CPU usage of DS-SLAM and Blitz-SLAM, respectively.
Memory usage is also substantially lower, requiring only 2.9 GB compared with 4.8 GB and
5.3 GB for the deep learning methods. In terms of processing time, the proposed method
achieves 48 ms per frame, more than twice as fast as the deep learning approaches. This
efficiency is crucial for real-time applications in lightweight autonomous vehicles.

5. Conclusions

An enhanced visual SLAM-based collision-free driving framework for lightweight
autonomous vehicles is proposed in this paper. The proposed method improves the ad-
vanced ORB-SLAM3 algorithm, augmented with optical flow techniques to efficiently cull
outliers, thereby significantly enhancing the perception capabilities of a single RGB-D
camera in complex indoor environments. The novel path planning algorithm integrates
control Lyapunov function (CLF) and control barrier function (CBF) within a quadratic
programming (QP) framework, which is further refined through an obstacle shape recon-
struction process (SRP). The simulation experiments conducted in the Gazebo environment
demonstrated that the proposed method effectively generates safe, stable, and efficient
trajectories, outperforming existing approaches in computational efficiency and trajectory
optimization. The adoption of a camera-based system not only reduces reliance on heavier,
more expensive sensor setups but also offers a cost-effective solution with broad applica-
tional potential in autonomous driving technologies. Future efforts will focus on enhancing
the adaptability of this system to dynamic environments and integrating advanced machine
learning techniques to improve decision-making processes in varying scenarios.

Author Contributions: Conceptualization, Z.L. and Z.T.; methodology, Z.L.; software, Z.T.; valida-
tion, Z.L., Z.T. and Q.Z.; formal analysis, Z.L.; investigation, Z.T.; resources, Z.L.; data curation, Z.T.;
writing—original draft preparation, Z.L.; writing—review and editing, J.L. and H.Z.; visualization,
Z.T.; supervision, J.L.; project administration, Z.L.; funding acquisition, J.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported in part by the China Scholarship Council Ph.D. Scholarship
for 2023-2027 (No.202206170011), in part by the Leverhulme Trust Early Career Fellowship (ECF-
2021-517), and in part by the UK Royal Society International Exchanges Cost Share Programme
(IEC\NSFC\223228.)

Institutional Review Board Statement: Not applicable.

Sensors 2024, 24, 6258 17 of 18

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Li, Z.; Li, J.; Wang, W. Path Planning and Obstacle Avoidance Control for Autonomous Multi-Axis Distributed Vehicle Based on

Dynamic Constraints. IEEE Trans. Veh. Technol. 2023, 72, 4342–4356. [CrossRef]
2. Kim, C.; Yoon, Y.; Kim, S.; Yoo, M.J.; Yi, K. Trajectory Planning and Control of Autonomous Vehicles for Static Vehicle Avoidance

in Dynamic Traffic Environments. IEEE Access 2023, 11, 5772–5788. [CrossRef]
3. Wang, Y.; Lin, J.; Zhang, L.; Wang, T.; Xu, H.; Qi, Y.; Zhang, G.; Liu, Y. Stable Obstacle Avoidance Strategy for Crawler-Type

Intelligent Transportation Vehicle in Non-Structural Environment Based on Attention-Learning. IEEE Trans. Intell. Transp. Syst.
2023, 24, 7813–7830. [CrossRef]

4. Park, B.; Oh, H. Vision-based obstacle avoidance for UAVs via imitation learning with sequential neural networks. Int. J. Aeronaut.
Space Sci. 2020, 21, 768–779. [CrossRef]

5. Kim, M.; Kim, J.; Jung, M.; Oh, H. Towards monocular vision-based autonomous flight through deep reinforcement learning.
Expert Syst. Appl. 2022, 198, 116742. [CrossRef]

6. Abdi, H.; Raja, G.; Ghabcheloo, R. Safe Control using Vision-based Control Barrier Function (V-CBF). In Proceedings of the 2023
IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; IEEE: Piscataway, NJ,
USA, 2023; pp. 782–788.

7. Desai, M.; Ghaffari, A. Clf-cbf based quadratic programs for safe motion control of nonholonomic mobile robots in presence
of moving obstacles. In Proceedings of the 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(AIM), Sapporo, Japan, 11–15 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 16–21.

8. Loquercio, A.; Kaufmann, E.; Ranftl, R.; Müller, M.; Koltun, V.; Scaramuzza, D. Learning high-speed flight in the wild. Sci. Robot.
2021, 6, eabg5810. [CrossRef]

9. Yang, F.; Cao, C.; Zhu, H.; Oh, J.; Zhang, J. FAR Planner: Fast, Attemptable Route Planner using Dynamic Visibility Update.
In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27
October 2022; pp. 9–16. [CrossRef]

10. Lin, Z.; Zhang, Q.; Tian, Z.; Yu, P.; Lan, J. DPL-SLAM: Enhancing Dynamic Point-Line SLAM Through Dense Semantic Methods.
IEEE Sens. J. 2024, 24, 14596–14607. [CrossRef]

11. Zhou, X.; Wang, Z.; Ye, H.; Xu, C.; Gao, F. EGO-Planner: An ESDF-Free Gradient-Based Local Planner for Quadrotors. IEEE
Robot. Autom. Lett. 2021, 6, 478–485. [CrossRef]

12. Sun, Y.; Liu, M.; Meng, M.Q.H. Motion removal for reliable RGB-D SLAM in dynamic environments. Robot. Auton. Syst. 2018,
108, 115–128. [CrossRef]

13. Cheng, J.; Sun, Y.; Meng, M.Q.H. Improving monocular visual SLAM in dynamic environments: An optical-flow-based approach.
Adv. Robot. 2019, 33, 576–589. [CrossRef]

14. Dai, W.; Zhang, Y.; Li, P.; Fang, Z.; Scherer, S. RGB-D SLAM in Dynamic Environments Using Point Correlations. IEEE Trans.
Pattern Anal. Mach. Intell. 2022, 44, 373–389. [CrossRef] [PubMed]

15. Du, Z.J.; Huang, S.S.; Mu, T.J.; Zhao, Q.; Martin, R.R.; Xu, K. Accurate Dynamic SLAM Using CRF-Based Long-Term Consistency.
IEEE Trans. Vis. Comput. Graph. 2022, 28, 1745–1757. [CrossRef] [PubMed]

16. Wang, Y.; Xu, K.; Tian, Y.; Ding, X. DRG-SLAM: A Semantic RGB-D SLAM using Geometric Features for Indoor Dynamic Scene.
In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27
October 2022; pp. 1352–1359. [CrossRef]

17. Yuan, C.; Xu, Y.; Zhou, Q. PLDS-SLAM: Point and Line Features SLAM in Dynamic Environment. Remote Sens. 2023, 15, 1893.
[CrossRef]

18. Zhang, Q.; Li, C. Semantic SLAM for mobile robots in dynamic environments based on visual camera sensors. Meas. Sci. Technol.
2023, 34, 085202. [CrossRef]

19. Mir, I.; Gul, F.; Mir, S.; Khan, M.A.; Saeed, N.; Abualigah, L.; Abuhaija, B.; Gandomi, A.H. A survey of trajectory planning
techniques for autonomous systems. Electronics 2022, 11, 2801. [CrossRef]

20. Wang, K.; Huang, Q.; Wu, S. Application of long short-term memory neural network in geoelectric field data processing. Chin. J.
Geophys. 2020, 63, 3015–3024. (In Chinese) [CrossRef]

21. Bhattacharya, P.; Gavrilova, M.L. Voronoi diagram in optimal path planning. In Proceedings of the 4th International Symposium
on Voronoi Diagrams in Science and Engineering (ISVD 2007), Pontypridd, Wales, 9–11 July 2007; pp. 38–47. [CrossRef]

22. Bhattacharya, P.; Gavrilova, M.L. Roadmap-based path planning-using the voronoi diagram for a clearance-based shortest path.
IEEE Robot. Autom. Mag. 2008, 15, 58–66. [CrossRef]

23. Chi, W.; Ding, Z.; Wang, J.; Chen, G.; Sun, L. A Generalized Voronoi Diagram-Based Efficient Heuristic Path Planning Method for
RRTs in Mobile Robots. IEEE Trans. Ind. Electron. 2022, 69, 4926–4937. [CrossRef]

24. Ayawli, B.B.K.; Appiah, A.Y.; Nti, I.K.; Kyeremeh, F.; Ayawli, E.I. Path planning for mobile robots using Morphological Dilation
Voronoi Diagram Roadmap algorithm. Sci. Afr. 2021, 12, e00745. [CrossRef]

http://doi.org/10.1109/TVT.2022.3227447
http://dx.doi.org/10.1109/ACCESS.2023.3236816
http://dx.doi.org/10.1109/TITS.2022.3226493
http://dx.doi.org/10.1007/s42405-020-00254-x
http://dx.doi.org/10.1016/j.eswa.2022.116742
http://dx.doi.org/10.1126/scirobotics.abg5810
http://dx.doi.org/10.1109/IROS47612.2022.9981574
http://dx.doi.org/10.1109/JSEN.2024.3373892
http://dx.doi.org/10.1109/LRA.2020.3047728
http://dx.doi.org/10.1016/j.robot.2018.07.002
http://dx.doi.org/10.1080/01691864.2019.1610060
http://dx.doi.org/10.1109/TPAMI.2020.3010942
http://www.ncbi.nlm.nih.gov/pubmed/32750826
http://dx.doi.org/10.1109/TVCG.2020.3028218
http://www.ncbi.nlm.nih.gov/pubmed/33001804
http://dx.doi.org/10.1109/IROS47612.2022.9981238
http://dx.doi.org/10.3390/rs15071893
http://dx.doi.org/10.1088/1361-6501/acd1a4
http://dx.doi.org/10.3390/electronics11182801
http://dx.doi.org/10.6038/cjg2020O0119
http://dx.doi.org/10.1109/ISVD.2007.43
http://dx.doi.org/10.1109/MRA.2008.921540
http://dx.doi.org/10.1109/TIE.2021.3078390
http://dx.doi.org/10.1016/j.sciaf.2021.e00745

Sensors 2024, 24, 6258 18 of 18

25. Triharminto, H.H.; Wahyunggoro, O.; Adji, T.; Cahyadi, A.; Ardiyanto, I. A novel of repulsive function on artificial potential field
for robot path planning. Int. J. Electr. Comput. Eng. 2016, 6, 3262.

26. Wang, M.; Zhang, L.; Zhang, Z.; Wang, Z. A Hybrid Trajectory Planning Strategy for Intelligent Vehicles in On-Road Dynamic
Scenarios. IEEE Trans. Veh. Technol. 2023, 72, 2832–2847. [CrossRef]

27. Ames, A.D.; Coogan, S.; Egerstedt, M.; Notomista, G.; Sreenath, K.; Tabuada, P. Control barrier functions: Theory and applications.
In Proceedings of the 2019 18th European control conference (ECC), Naples, Italy, 25–28 June 2019; IEEE: Piscataway, NJ, USA,
2019; pp. 3420–3431.

28. Rösmann, C.; Hoffmann, F.; Bertram, T. Integrated online trajectory planning and optimization in distinctive topologies. Robot.
Auton. Syst. 2017, 88, 142–153. [CrossRef]

29. Lucas, B.D.; Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision. In Proceedings of the
Imaging Understanding Workshop, Washington, DC, USA, 23 April 1981; pp. 121–130.

30. Harris, C.; Stephens, M. A Combined Corner and Edge Detector. In Proceedings of the Alvey Vision Conference, Manchester, UK,
31 August–2 September 1988; Volume 15.

31. Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography. Comm. ACM 1981, 24, 381–395. [CrossRef]

32. Huang, J.; Liu, Z.; Zeng, J.; Chi, X.; Su, H. Obstacle avoidance for unicycle-modelled mobile robots with time-varying control
barrier functions. In Proceedings of the IECON 2023-49th Annual Conference of the IEEE Industrial Electronics Society, Singapore,
16–19 October 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6.

33. Li, D.; Liu, B.; Huang, Z.; Hao, Q.; Zhao, D.; Tian, B. Safe motion planning for autonomous vehicles by quantifying uncertainties
of deep learning-enabled environment perception. IEEE Trans. Intell. Veh. 2024, 9, 2318–2332. [CrossRef]

34. Jogeshwar, B.K.; Lochan, K. Algorithms for Path Planning on Mobile Robots. IFAC-PapersOnLine 2022, 55, 94–100. [CrossRef]
35. Mohamed, A.A.; Ziedan, N.I.; Gaafar, T.S. Artificial Potential Field Approaches for Indoor Mobile Robot Path Planning: A Review.

Egypt. Int. J. Eng. Sci. Technol. 2023, 44, 89–98. [CrossRef]
36. Yu, C.; Liu, Z.; Liu, X.J.; Xie, F.; Yang, Y.; Wei, Q.; Fei, Q. DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments. In

Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October
2018; pp. 1168–1174. [CrossRef]

37. Fan, Y.; Zhang, Q.; Tang, Y.; Liu, S.; Han, H. Blitz-SLAM: A semantic SLAM in dynamic environments. Pattern Recognit. 2022,
121, 108225. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TVT.2022.3215476
http://dx.doi.org/10.1016/j.robot.2016.11.007
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.1109/TIV.2023.3297735
http://dx.doi.org/10.1016/j.ifacol.2022.04.016
http://dx.doi.org/10.21608/eijest.2023.185614.1213
http://dx.doi.org/10.1109/IROS.2018.8593691
http://dx.doi.org/10.1016/j.patcog.2021.108225

	Introduction
	Related Works
	Geometric Methods Enhanced SLAM Approach
	Trajectory Generation Methods

	System Overview
	Perception Based on Vision
	Outlier Features Removing
	Point Features Optimizing Algorithm
	Global Path Planning by Using CLF-CBF-QP-SRP
	Vehicle Model
	The Formulation of CLF
	The Stability Control of Moving Car Using CLF
	The Formulation of CBF
	Safe Control of Moving Car Using CBF

	Safe and Stable Control for Self-Driving Cars

	Experimental Evaluation
	Simulation Environments Setup
	Stability and Safety of Trajectory Generation
	Comparison with State-of-the-Art Algorithm
	Safe and Efficient Trajectory Generation for Three Target Points
	Safe and Stable Control of Target Point 3
	Comparison with Advanced Trajectory Generation Algorithm
	Comparison with Deep Learning-Based Methods

	Conclusions
	References

