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Abstract—Autonomous racing has attracted extensive interest
due to its great potential in self-driving at the extreme limits.
Model-based and learning-based methods are widely used in
autonomous racing. Out of which, model-based methods cannot
cope with complex environments when only local perception is
available. This limit can be overcome by the Proximal policy opti-
mization (PPO), a typical learning-based method, which does not
excessively rely on global perception. However, existing PPO faces
challenges with low training efficiency in long sequences. To solve
this issue, this paper develops an improved PPO by introducing a
curiosity mechanism, a balanced reward function, and an image-
efficient actor-critic network. The curiosity mechanism focuses on
training on key segments, facilitating efficient short-term learning
of the PPO. The balanced reward function adjusts rewards based
on the complexity of racetracks, promoting efficient exploration
of the control strategy during training. The image-efficient actor-
critic network enhances the PPO to fast process the perceived
information. Simulation results on a physical engine demonstrate
that the proposed algorithm outperforms benchmark algorithms
in achieving less number of collisions, higher peak reward with
less training time, and shorter laptime among multiple testing
racetracks.

Index Terms—Autonomous racing, local information, proximal
policy optimization, curiosity mechanism, balanced reward func-
tion.

I. INTRODUCTION

CAR racing is a challenging and exciting sport that
requires reliable decision making, precise control, and

robust perception because of complex racetracks. As illus-
trated in Fig. 1, the racetracks are designed with a series
of sharp bends, which makes safe driving more difficult at
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Fig. 1. Sketch of a closed-circuit car racing environment.

high velocity. To address the limitations of traditional car
racing approaches, autonomous racing has been developed,
which combines the excitement of human car racing and the
state-of-the-art autonomous driving technologies. Compared to
traditional car racing, autonomous racing can drive through
complex tracks at the speed limits with high precision due
to its superior decision-making capabilities. The capabili-
ties of autonomous racing have been demonstrated in the
Roborace [1]–[3], Indy Autonomous Challenge [4]–[6], and
Formula Student Driverless [7].

Global perception and local perception are both being
applied to the autonomous racing. Out of which, local
perception-based methods rely less on equipment and therefore
are more cost effective. Perception-based decision making con-
sists of model-based and learning-based methods. Learning-
based methods are more promising because the global per-
ception is not excessively used. For example, reinforcement
learning (RL) is capable to adapt to the local conditions of
the environment and generates optimal control commands [8].
Deep reinforcement learning (DRL), extending RL with deep
neural networks (DNN) to handle complex functions, allows
agents to learn from high-dimensional inputs like images.
Existing DRL algorithms, such as the proximal policy opti-
mization (PPO), perform well in short-term gaming scenar-
ios. However, these algorithms still encounter challenges in
the learning during the long-duration racing. To this end, a
local perception-based, image-efficient, and balanced reward-
orientated PPO with curiosity mechanism (PPO-C) is proposed
in this paper, as illustrated in Fig. 2. The inputs of the decision
network are the sequence of local images. An image-efficient
decision network is proposed to process images and generate
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Fig. 2. Diagram of the autonomous racing algorithm using the curiosity-assisted proximal policy optimization.

safe control commands. The curiosity mechanism [9] uses
intrinsic rewards to encourage the agents paying more attention
to the steps with large prediction errors. Therefore, the agents
can mitigate the uncertainties in local planning. Furthermore,
a balanced reward function is proposed to consider both
historical and prospective actions. The main contributions of
this paper are as follows.

• Only the local perception is used to get images that com-
bine the racing vehicle and the surrounding environment.
Global perception is no more required in detecting the
boundaries and the center line of the racing track.

• The time required to reach the saturation value of rewards
is significantly reduced, and the collisions with sharp
bends are avoided. The convergence of the training is
improved over benchmark algorithms.

• Shorter laptime and less collisions are achieved by the
proposed balanced reward function. The challenge of
maintaining balanced exploration over long sequences is
tackled by introducing the balanced reward function.

The rest of the paper is organized as follows. Section
II summarizes the related works. Section III introduces the
decision network. Section IV presents the details of curiosity-
assisted training optimization. Section V elaborates the real-
time proximal policy update mechanism. Section VI demon-
strates the simulation results. Section VII presents the discus-
sions. Section VIII draws the conclusions.

II. RELATED WORKS

A. Challenges in Autonomous Racing

In traditional car racing, human driving skills dominate
the competition because unexpected disturbances are often
encountered. To minimize the effects of these disturbances,
two main approaches have been developed. The first approach
aims to optimize the aerodynamics of the racing car, and
the second approach is to design effective control strategies.
Despite the demonstrated effectiveness, the first approach is
restrained by the limited potential for improvement. For the

majority of race cars, the aerodynamic models have been
optimized to their maximum capacity. The drawback of the
second approach lies in the absence of an experience-based
decision-making mechanism. Therefore, the control perfor-
mance cannot be effectively transferred to different tracks.
Existing methods in autonomous racing are mainly ground
in global perception and local perception. Global perception
leverages comprehensive environmental data, the whole maps,
and precise localization to provide a broad context for long-
term planning [10], [11]. External sensors have been applied
to global perception such as GPS, Inertial Measurement Unit
(IMU), or Vehicle-to-Everything (V2X) communication. On
the other hand, local perception focuses on real-time sensor
data to detect and respond to immediate surroundings, ensuring
dynamic object detection, short-term planning, and collision
avoidance. Local perception uses onboard sensors, such as
cameras and LIDARs [12]. For example, local perception is
employed to perceive the surrounding road geometry and plan
the vehicle speed in high-speed driving [13].

Global perception-based methods, predominately used in
real world racing, heavily depend on specific perception
conditions [6], [14], [15]. However, local perception-based
methods are not bounded by specific perception conditions,
reducing costs associated with global perception-based equip-
ment. Therefore, local perception-based methods have gained
popularity in autonomous racing [16], [17]. Model-based
methods rely on pre-defined models or extra processes, such
as Gaussian Process (GP) to quantify uncertainties [18].
However, model-based methods are incapable to cope with
complex environments when only local perception is available.
Model-based methods struggle in complex environments with
only local perception due to their reliance on predefined
planning and optimization rules. Without global information,
these methods often lack the flexibility to handle unpredictable
sections, as they may not obtain safe and efficient routes in
unseen environments. A path-planning method is proposed in
[19] that uses a path created by connecting the center lines
on the straights and using clothoids between the center lines.
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Table I
ENHANCED COMPARISON OF KEY FEATURES ACROSS DIFFERENT REINFORCEMENT LEARNING ALGORITHMS WITH REASONS FOR DIFFERENCES

Feature PPO-C DDPG PPO SAC Reasons for Difference

Enhanced convergence consistency ✓ ✓ PPO-C and PPO use a clipped objective
function limiting excessive updates, enhanc-
ing training convergence consistency.

Ability to focus on complex segments ✓ Curiosity rewards enhance learning in com-
plex scenarios against SAC and DDPG.

Adaptation to complex environments ✓ Curiosity rewards help PPO-C adjust strat-
egy more effectively in complex conditions
than other algorithms.

Improved data utilization efficiency ✓ ✓ PPO-C and PPO update their learning mul-
tiple times per sample, improving efficiency.

Optimization of critical behaviors ✓ ✓ ✓ PPO-C targets critical areas through intrin-
sic curiosity, unlike standard PPO or SAC.

Promoting exploration in uncertainty ✓ Curiosity-based exploration targets high un-
certainty areas ignored by other algorithms.

Advanced reward structure ✓ PPO-C uses prediction errors in rewards to
accelerate learning, unlike other algorithms.

The forward center line is required for global perception. A
minimum-time optimal control problem using the centerline of
the racetrack is formulated in [20]. Furthermore, uncertainty
quantification in Model-based methods, such as GP, may en-
counter challenges when the real racetrack differs significantly
from the tracks used to define the uncertainties. As a compari-
son, learning-based methods learn the optimal driving manner
from data [21]. DRL, an advanced learning-based method
that leverages deep neural networks to approximate complex
functions, enables agents to learn from locally perceptive
images. Additionally, [22] secured the world championship
in automobile racing by using the DRL. It demonstrated the
outstanding capability of DRL to enhance both the safety and
stability in autonomous racing. Furthermore, [23] proposes a
DRL powered racing system that surpasses the quickest human
driver among a dataset comprising more than 50,000 players.

B. Deep Reinforcement Learning

State-of-the-art results of using DRL have been demon-
strated in autonomous cars [2]. Recently, a set of DRL al-
gorithms with exceptional performance have attracted interest,
such as deep deterministic policy gradient (DDPG), soft actor-
critic (SAC) and PPO algorithms.

DDPG is an off-policy algorithm that uses deep neural
networks to learn the control policy. With its suitability for
handling high-dimensional data, multiple demonstrations of
using DDPG have been presented in autonomous driving [24].
In particular, a DDPG model was proposed for safe driving
within an end-to-end architecture [24]. Improved DDPG mod-
els have been proposed to enhance training efficiency [25]. The
speed of racing cars could be accelerated by using DDPG, as
demonstrated in [26]. A vision-based DDPG that considers
driving safety at high speeds was proposed in [27]. In these
studies, DDPG produces a definite control policy instead of
a probability distribution of control policies. However, this
definite control limits the exploration of other potential actions,
implying that the decision may be satisfactory but not optimal.
SAC is another off-policy model that incorporates a maximum
entropy framework to enhance training robustness [28]. It has

been shown to achieve higher average speeds than DDPG
on multiple racetracks [29]. However, [29] focuses solely on
optimizing average speed without considering other factors,
such as reducing collisions with racetracks. Although SAC en-
courages exploration, it might not efficiently explore strategies
to simultaneously minimize lap times and avoid collisions due
to its undirected exploration. Furthermore, SAC’s entropy term
in the loss function sometimes leads to excessive exploration
and slower convergence in complex scenarios.

The PPO depicts the control policy as a probability distribu-
tion, which facilitates faster exploration of strategies compared
to DDPG [30]. Moreover, PPO uses a policy gradient-based
method, achieving a stable equilibrium and providing assur-
ance of its steadiness [31]. In contrast, off-policy algorithms
are unstable and ineffective because they rely on training data
that must be efficient under the current policy [32]. PPO has
been used for generating driving strategies that balance safety
and efficiency [33]. However, PPO aims to identify the most
favorable steps for improvement while avoiding regression that
could lead to performance degradation. In PPO, the agent
may struggle to generalize its experiences across different
states and actions, leading to slower convergence. Moreover,
PPO is prone to falling into local optima, which increases the
training time [34]. Furthermore, the training efficiency of PPO
in complex environments is low [35].

In summary, current DRL algorithms encounter challenges
in fully exploring the environment, unstable training in off-
line algorithm, and exhibiting lower convergence speed. PPO
addresses some of these challenges by employing probability
distributions for exploration. However, the training efficiency
of PPO diminishes in complex-environment tasks like racing
due to the increased variability. Moreover, the inherent risk
of collisions with track boundaries during perilous turns re-
mains unresolved due to its averaged intention mechanism.
Additionally, achieving balanced exploration is crucial in long
sequences to effectively construct the probability distribution
of PPO. To mitigate these issues, a balanced reward-orientated
PPO with curiosity mechanism is proposed in this paper. The
proposed curiosity mechanism directs the attention of PPO to
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Fig. 3. Structure of the image-efficient actor-critic network.

critical short segments, thus enhancing the training efficiency.
Furthermore, the balanced reward function facilitates balanced
exploration from a global perspective. As a result, the low
convergence speed and poor performance in crucial racing
sections of PPO are addressed by introducing the curiosity
mechanism and the balanced reward function.

The advantages of PPO-C compared to PPO, DDPG, and
SAC are summarized in Table I. PPO-C uses intrinsic re-
wards to drive targeted exploration towards less-understood
regions. The targeted exploration is particularly beneficial in
complex environments such as racing, where standard rewards
are sparse or less informative. Moreover, PPO-C excels in
dynamically changing environments by continually adapting
its policy to maximize both normal and intrinsic rewards. The
adaptive learning fosters learning in crucial and difficult-to-
navigate parts, optimizing critical behaviors, and promoting
exploration based on state uncertainty.

III. DECISION NETWORK

The decision network is to generate safe and efficient control
commands during training. The decision network consists of
two sets of image-efficient actor-critic networks that receive
the sequence of images, the balanced rewards of actions and
the curiosity reward respectively. The control policy in the
actor-critic network compares the candidate control commands
and chooses the best one based on their relative advantages.

A. Network Structure

The aforementioned two actor-critic networks select actions
based on the states of the racing car. Given the proven
effectiveness of convolutional neural networks (CNN) in image
classification [36], a series of convolutional layers are used to
extract essential information from raw image data. The control
policy selects commands to minimize collisions and laptime.
Figure 3 illustrates the actor-critic network structure.

The actor-critic network comprises an actor network (AN)
and a critic network (CN) in similar structures. The AN
generates candidate control commands and the CN assesses
their relative advantages. The AN consists of an input layer,
convolutional layers, a linear layer, and an output layer. It
processes the current state, extracts features, adds linearity

Algorithm 1: Actor-Critic Network
Input: St+1,rt
Output: πθ evaluated by the Critic-Actor Network

1 for Each racing sequence do
2 for m=1 to M do
3 for t=m to T do
4 Run AN to receive an action a(t) using

current policy
5 Run CN to compute reward Rt,...,RT
6 Compute relative advantage A of a(t)

A = Rm + γRm+1 + ...+ γTRm+T

7 end
8 end
9 Update πθ according to A

10 end

for better representation learning, and generates control com-
mands. The ReLU activation is used to introduce non-linearity.
The CN is composed of an input layer, convolutional layers,
and an output layer. It uses the AN output and current state as
inputs, extracts features, and selects the best control commands
based on their evaluation. The CN aims to reflect long-term
advantages over a period T , comparing the performance of
selected control commands with the average performance.

The convolution layer (CL) is expressed as:

CL = (A,B,C) (1)

where A , B , and C indicate the number of input channels, the
number of output channels, and the kernel size, respectively.

To verify the image-efficient property of the proposed
network, a comparison is made against the SqueezeNet [37].
The SqueezeNet is designed to achieve high accuracy with
significantly fewer parameters and a smaller model size,
making it theoretically suitable for processing imagingltraining
data. However, when applied to the training in car racing,
SqueezeNet achieves a peak reward of around 150, which is
substantially lower than the peak reward of 900 obtained by
the proposed network. This suggests that although SqueezeNet
is efficient in parameters, it might not be as effective in
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handling the specific characteristics of racing images.The
limited capacity and heavy reliance on 1 × 1 convolutions
in SqueezeNet restrict its ability to capture intricate spa-
tial relationships. Additionally, fine-grained details that are
crucial for optimal performance in car racing may also be
inadequately represented. The proposed network proves to be
more successful in capturing spatial dependencies and making
accurate decisions in the complex task of car racing.

B. Control Policy Update of the Decision Network

The control policy is determined by the weights of the
neurons in the decision network. Therefore, the weights of
the neurons should be adjusted to optimize the control policy.
Figure 4 shows an example of a learning process involving
a single racing sequence. The autonomous racing car starts
from the starting point with the maximum score sm . During
the racing, two types of losses including safety loss Ls and
efficiency loss Le are defined. Ls increases as the distance
to the track boundaries decreases. Le is a constant value until
the car completes the racing. When the autonomous racing car
reaches the finish point, a final score is calculated.

The final score sf is formulated as

sf = sm − Ls − Le (2)

once the final score is obtained, a score comparator compares
the final score with a predefined expected score. If the final
score is higher than the expected value, the weights of the
neurons in the decision network are updated. Otherwise, the
weights are maintained, as the performance does not meet the
expected level. When the racing car leaves the racetrack, the
training score suffers significant safety losses, hindering the
attainment of expected rewards. As decision sequences failing
to reach the expected rewards are sieved out, the control policy
updating prevents instances of the car veering off the track.

IV. CURIOSITY-ASSISTED TRAINING OPTIMIZATION

The curiosity-assisted optimization aims to enhance the
training efficiency and the attention to dangerous sections,
composing of the balanced reward function and the curiosity
mechanism. The balanced reward function is to avoid colli-
sions and reduce laptime during the training. The curiosity
mechanism is to make optimal decisions in particular under
hazard conditions.

A. Feature Encoding with CNNs

This paper uses local perception. Therefore, the input to the
curiosity mechanism consists of a sequence of raw images,
{It}Tt=1, captured from the racing environment over a period
of time, from t to T . The It represents the image at time
step t. To extract meaningful features from these images, the
CNNs are employed as the feature encoder. The CNNs learn to
detect local patterns and features in the input images, reduce
the spatial dimensions and provide translation invariance. Let
θf denote the parameters of the feature encoder. At each time
step t, the CNNs process the input image It and output a
feature vector Fm,t:

Fm,t = CNN(It; θf ) (3)

The encoded feature vector Fm,t captures the relevant in-
formation from the input image It and serves as a compact
representation of the racing environment at time step t.

B. Curiosity Mechanism

In RL, the agent is expected to pay attention to specific
sections of racetracks. However, the traditional agent explores
each part of the game with equal attention, indicating that
no particular areas receive highlighted emphasis. Although a
high averaged reward generally signifies good performance,
safety issues may persist in dangerous corners due to unequal
focus. Hence, establishing an attention-distribution mechanism
is necessary. To diversify the focus across distinct sections, the
curiosity space Sc is denoted by

Sc =| Fm − Fp | (4)

where Fp denotes the predicted encoded features. Sc quanti-
fies the discrepancy between the outputs Fm and Fp. A higher
value of the discrepancy indicates a poorer understanding
of the environment. Therefore, this value enables the agent
to identify sections of the racetrack where its understanding
is lacking and that require further exploration. By encour-
aging targeted exploration in these sections, the agent can
efficiently gather data and refine its understanding of the
environment. This targeted exploration also helps maintain a
balance between exploration and exploitation. Therefore, the
agent is ensured not to get stuck in suboptimal behaviors and
continuously improves its performance.

At each time step t , assume that the action at , current state
st and next state st+1 are known. The output encoded features
of the current state Fm,s and the next state Fm,s+1 could be
obtained via feature quantifier vectors

Fm,s = q(st, θf ) (5)
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Fm,s+1 = q(st+1, θf ) (6)

where Fm,s denotes the current encoded features. Fm,s is
taken as the input to obtain the predicted encoded features of
the next state Fp,s

Fp,s = FM(at, Fm,s) (7)

where FM is the forward model to predict the feature rep-
resentation of the next state. The curiosity reward space rc
could be obtained by

rc = β ∥Fm,s+1 − Fp,s∥22 (8)

where β is a scaling factor obtained by calibration. The
curiosity reward rc plays a vital role in guiding the agent’s
exploration and enhancing its learning efficiency. While Sc

quantifies the discrepancy between predicted and actual en-
coded features, rc takes this discrepancy and directly incor-
porates it into the reward. The integration of curiosity into
the reward function provides several advantages compared to
using Sc alone. From a theoretical perspective, incorporating
rc directly into the reward modifies the RL objective to include
an intrinsic motivation component. This modification can be
formalized by augmenting the traditional reward function with
rc as an integrated reward. By directly influencing the agent’s
reward, rc helps prioritize actions that reduce significant
uncertainty, leading to more efficient learning. The agent
receives immediate feedback by exploring uncertain states,
which is reflected in the integrated reward. The integrated
reward encourages a balanced approach to exploration and
exploitation. This balance is crucial in RL, as it prevents the
agent from focusing too much on curiosity (exploration) at the
expense of task performance (exploitation).

By maintaining a constant exploration and learning, rc
helps the agent overcome unsatisfying sections associated
with high discrepancy and facilitates continuous learning and
improvement. Furthermore, β in the computation of rc allows
for the balancing of curiosity with the traditional reward. This
ensures that the agent’s exploration is flexibly guided by both
curiosity and task-specific objectives.

C. Balanced Reward Function

The reward function is the feedback module that evalu-
ates the actions generated by the decision network. During
autonomous racing, the laptime and collision rates are the
two major factors that evaluate the performance of the racing
car. The laptime reflects the effectiveness of actions, while the
collision frequency measures the safety of actions. Therefore,
a good reward function for autonomous racing should guide
the decision network to select actions that can avoid collisions
with the track boundaries and reduce the laptime. However,
the traditional reward functions assign equal attention to each
step. The averaged reward is heavily influenced by previous
high-reward actions. Therefore, the averaged reward is not able
to balance the historical and current rewards. The averaged
reward function is defined as

rave = 0.99rave + 0.01rcurrent (9)

Algorithm 2: Curiosity-assisted control policy update

1 Randomly initialize AN, CN, FM and Inverse Model
(IM)

2 Initialize state s0
3 Define the value of hyper-parameter α for the forward

network (FN) and the backward network (BN)
4 for m=1 to M do
5 Use AN to obtain sm, rm, am, and sm+1.
6 Compute rc with (6).
7 Reconstruct rm :

rm = rm + rc.

8 Store sm, rm, am and sm+1 into the game
sequence.

9 Compute A by Algorithm 1.
10 Compute the loss of FN LF by

LF = ∥Fm,s+1 − Fp,s∥22 .

11 Compute ap by IM

ap = IM(Fm,s, Fm,s+1).

12 Compute the loss of IM LB

LB = ∥ap − at∥22 .

13 Update BN and FN

min
AN,FN,BN

(1− α)LB + αLF .

14 Update πθ in AN and CN using Algorithm 1.
15 end

where rave and rcurrent are the averaged reward for historical
states and the reward of the current state, respectively.

Collisions during large and series bends at high speeds
are the main safety concerns. The reward function should
pay more attention to these critical steps, which are called
corner rewards. However, the averaged reward cannot focus on
dangerous scenarios effectively, as the averaged reward gives
equal weights to all historical steps. Moreover, the longer the
sequence length, the less attention it pays to the performance
of each single step. To address this issue, a hyper parameter
is introduced to balance the average reward and the corner
rewards. With the hyper parameter, a balanced reward function
is proposed to consider both the historical and current rewards

rb = (1− γ ∗Nc)rave + γ ∗Nc ∗ rcurrent (10)

where γ represents a hyper parameter that directs the racing
car to prioritize random corners. rb is the balanced reward
under the current state of the racing car. Nc is the number of
corners. If there are lots of corners, the current decision is more
crucial and thus the discount of historical reward becomes
higher. rave is formulated as

rave =

N−1∑
i=1

sif (11)
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Fig. 5. Curiosity-assisted control policy update of the decision network. (a)
General process of the control policy update. (b) Internal structure of the
decision network.

where N is the number of current step. sif is the final score
at ith step. rcurrent is equal to sf at N step. Therefore, γ pro-
motes a safety-aware and forward-looking strategy, allowing
the car to pay attention to possible dangers.

Constraints on the learning speed are also required to be
limited within a fair range during each update. To improve
the stability in learning, a clipped surrogate objective is used
to control the learning speed. The clipped surrogate objective
prevents significant adjustments of neurons that might lead to
control policy divergence. The clipped surrogate objective is
employed to update the policy network. The clipped surrogate
objective is defined as

Lclip = min(R ∗A, clip(R, 1− ϵ, 1 + ϵ) ∗A) (12)

where R is the ratio of the new policy probability to the old
policy probability, and the clip() function ensures that each
component of the gradient is limited between 1−ϵ and 1+ϵ . A
is obtained from the decision networks, and ϵ is a self-defined
hyper-parameter constraining the change for the weights of
neuros during each iterative update.

D. Curiosity-assisted Control Policy Optimization

The update of control policy based on the curiosity mecha-
nism is summarized in Algorithm 2. The IM is a component
of the decision network that predicts the actions based on the
current state and a target state. The FN is the forward network
that implements the forward model using a neural network. BN
is the backward network that learns the rationale of selecting
actions from a target state and moving backward to the current
state. Unlike traditional control policy updates, the curiosity-
assisted control policy updates both the FN and the BN. The

update of the FN and the BN is conducted by balancing the
losses of the BN and the FN using a scaling factor α . The
FN generates the curiosity reward, and the BN explores the
sections that need high attention. Figure 5(a) illustrates the
curiosity-based policy update. The generated data is stored in
the data storage, which is the profit under the chosen actions
based on the given state. The weights of the decision network
are updated using both actions and curiosity rewards.

Figure 5(b) illustrates the internal structure of the deci-
sion network. The observer actor network compares the ratio
between the updated strategy and the previous strategy to
measure whether the update is proper. The critic network
provides the relative advantages to access the values of control
commands. RMSProp is a process that helps train neural
networks by adjusting the learning rate for each parameter.

The learning begins with an initial exploration. During the
initial exploration, the agent randomly explores the racing
environment. Therefore, the initial exploration allows the agent
to form a preliminary understanding of the environment. After
the initial exploration, the optimization is utilized to update the
control policy network. With a continuous interaction with the
environment, the agent has the potential to focus on critical
areas. The curiosity mechanism enables the focused learning
by directing the attention towards regions with higher potential
for improvement. Throughout the learning, the decision results
are evaluated against a set of predefined metrics, such as the
laptime and collision occurrence frequency. By evaluating the
driving performance during the training, the algorithm can be
fine-tuned for various car racetracks.

E. Curiosity-based Training with Balanced Reward Function

To incorporate both the balanced reward rb and the curiosity
reward rc, a dual decision network is employed. The network
consists of two separate networks: the primary decision net-
work Dp and the curiosity decision network Dc. Out of which,
Dp is trained using the balanced reward rb, which reflects
the agent’s performance in terms of safety and efficiency. Dc

is trained using the curiosity reward rc, which encourages
exploration based on the discrepancy between predicted and
actual encoded features. At each time step t, the input image It
is processed by the CNN feature encoder to obtain the encoded
features Fm,t. These encoded features are then given to both
decision networks in generating their respective actions ap,t
and ac,t:

ap,t = Dp(Fm,t; θp) (13)

ac,t = Dc(Fm,t; θc) (14)

where θp and θc denote the parameters of Dp and Dc,
respectively. The action at executed in the environment is
determined by Dp. The training for the dual decision network
is illustrated in Algorithm 3. During each training episode, the
racing environment is reset, and the initial state s0 is obtained.
At each time step t, the input image It is processed by the
CNN feature encoder to obtain Fm,t. Fm,t are then given to
Dp and Dc in generating their respective actions ap,t and ac,t.
The action at executed in the environment is determined by
Dp. Dp is updated using the tuple (st, ap,t, rb,t, st+1), which
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Algorithm 3: Curiosity-Driven Exploration with Bal-
anced Reward Function

1 Randomly initialize CNN feature encoder with θf , Dp,
Dc, FM, and IM.

2 Initialize state s0.
3 Define the value of hyper-parameter α for balancing

the losses.
4 for epoch = 1 to N do
5 for episode = 1 to M do
6 Reset racing environment and obtain initial

state s0.
7 for t = 0 to T-1 do
8 Obtain input image It from state st.
9 Compute encoded features

Fm,t = CNN(It; θf ).
10 Generate actions ap,t = Dp(Fm,t; θp) and

ac,t = Dc(Fm,t; θc).
11 Execute action at = ap,t and observe next

state st+1, reward re,t, and curiosity
reward rc,t.

12 Obtain input image It+1 from state st+1.
13 Compute encoded features

Fm,t+1 = CNN(It+1; θf ).
14 Predict encoded features

Fp,t = FM(Fm,t, at; θfm).
15 Compute curiosity reward

rc,t = β∥Fm,t+1 − Fp,t∥22.
16 Reconstruct reward rt = re,t + rc,t.
17 Store (st, at, rt, st+1) into the replay buffer.
18 Compute the loss of FM

LF = ∥Fm,t+1 − Fp,t∥22.
19 Predict action

ap,t = IM(Fm,t, Fm,t+1; θim).
20 Compute the loss of IM LI = ∥ap,t − at∥22.
21 Update FM and IM by minimizing

(1− α)LI + αLF .
22 Update Dp and Dc using the stored

experiences in the replay buffer.
23 end
24 Exchange weights between Dp and Dc.
25 θp ← θc.
26 θc ← θp.
27 end
28 end

includes the balanced reward rb,t. Dc is updated using the
tuple (st, ac,t, rc,t, st+1), which includes the curiosity reward
rc,t. At the end of each training epoch, the weights of Dp and
Dc are exchanged. This weight exchange allows the networks
to share their learned knowledge and benefit from each other’s
experiences.

V. REAL-TIME PROXIMAL CONTROL POLICY UPDATE

The real-time control policy update comprises the gradient-
based control policy mechanism and the experience network.

The experience network uses the gradient-based mechanism
to adjust parameters and produce safe control commands.

A. Gradient-based Policy Update for Real-time Control

The PPO-C aims to learn the rules of choosing actions based
on the states of the car and the local racing environment.
Therefore, learning a precise policy in a short time is essential
for effective RL. The gradient policy method is applied to learn
the control policy more efficiently, enabling the experience
network to update its driving strategy by leveraging the
gradient of rewards.

A racing sequence includes a series of states. Denote N
as the number of separated states. The control commands
are generated by a probabilistic network for each state. The
probability of choosing a proper action in a given state
is written as pθ(at|st) . θ represents the parameters of the
policy model. The training involves continuously updating
the probabilities of different control commands. The racing
sequential probability is formulated as

S = (pθ(a1|s1), pθ(a2|s2), ..., pθ(aN |sN )) (15)

During the racing, the number of collisions with the track
boundaries indicates the level of safety. The laptime indicates
the level of racing capability. The probability of achieving a
game sequence pm in the mth track is defined as

pm =

N∑
t=1

pθ(at|st) (16)

Assume the total number of racetracks is M , and Rm is the
reward among the mth track. Thus, to generate a probability
distribution suitable for safe and efficient driving on different
racetracks, a reward function is defined as

Rtotal =

M∑
m

Rmpm (17)

where Rtotal is the total reward among M tracks. As Rm is
a fixed value for the sequence m , pm should be adjusted to
increase Rtotal . The radient descent method is an effective way
to update the decision network towards the desired outcomes.
The desired outcomes are defined as shorter laptime and
collision avoidance. The gradient descent method is expressed
as

▽f(x) = f(x)▽ lnf(x) (18)

Lemma 1 is used to transform (14) to a more rigorous format.

Lemma 1. For a differentiable function f(x) , the following
equation holds:

f(x)
dlnf(x)

dx
= f ′(x)

Proof. Assume the initial conditions are

y = lnf(x)

z = f(x) (19)

Then we have
y = lnz (20)
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Fig. 6. The gradient-based control policy update process.

According to (17), the following equation is obtained

dy

dz
=

1

z
(21)

From (16) we have
dz

dx
= f ′(x) (22)

It is seen that
dy

dx
=

dy

dz
× dz

dx
(23)

According to (20), we have

dy

dx
=

1

z
× f ′(x) (24)

Afterwards, (21) could be further transferred to

dy

dx
=

1

fx
× f ′(x) (25)

Combining y = lnf(x) with (22), the proof is finished with

f(x)
dlnf(x)

dx
= f ′(x) (26)

With Lemma 1, (14) is further transferred to

▽Rtotal =

M∑
m

Rmpm ▽ lnpm (27)

Assuming that there is a long series of states, the probability
of each racetrack pm is extremely low and thus considered
with the same small value. This small value is assumed to be
in accordance with classical probability distribution, and (24)
is further transferred to

▽Rtotal =
1

m

M∑
m

Rm ▽ lnpm (28)

Finally, each racing sequence could be expanded to N steps

▽Rtotal =
1

m

M∑
m

Rm

N∑
t=1

▽lnpm(at|st) (29)

The objective of (24) is to approach sequences associated
with greater racing rewards. θ is updated by utilizing the
rewards of each racing sequence. As illustrated in Fig. 6,
the incorporation of a gradient-based mechanism significantly
boosts the training efficiency by handling distinct states.
Adhering to racing regulations, the racing reward is desired

to reduce both laptime and achieve collision avoidance. The
update process of θ among track m is formulated as

θ = θ + α▽ logeπm(at|st) (30)

where α is a parameter for the gradient exploration and πm
is the strategy network trained in the mth track.

B. Control Policy Optimization of the Experience Network

The experience network has the same actor-critic network as
the decision network. Therefore, the experience network keeps
updating the actor-critic network parameters until the average
reward meets the desired value. The five steps to implement
the control policy update of the experience network are below.

• The historical game sequences are stored in the experi-
ence repla, which is a recorder of the rewards for different
combinations of states and actions. The current racing
environment, the car state and the reward are used to
update the experience replay.

• Candidate commands are generated according to the
current state, racing environment and control constraints.

• The relative advantages of candidate commands are es-
timated for every state-action pair in the generated data
through the actor-critic network.

• The optimal control commands are generated according
to the relative advantages.

• The average reward over the past training is assessed.
If the average reward is higher than the desired value,
the experience network is updated using a gradient-based
policy. Otherwise, the car state is updated and returned
to the first step for new iterations.

VI. SIMULATION RESULTS

The simulations are designed to evaluate the safety and
effectiveness of the PPO-C in different driving scenarios.
To generalize the training results, racetracks are randomly
selected from the candidate tracks. The training efficiency of
PPO-C and three other DRL algorithms has been assessed
in terms of training scores over various training epochs. The
number of collisions with track boundaries and the lap time
achieved by PPO-C have been compared and analyzed on 50
random racetracks. The racing performance at critical bends,
trajectories, and variations of control levels are illustrated by
four example cases.
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Fig. 7. The physical rule-based racing setup and test racetracks in the Box2D. (a) The physical model of the racing car in the Box2D. (b) The definition of
fixed distance in the Box2D. (c) The local perception of racing car in the Box2D. (d) The various tire traction in the Box2D.

(a) (b) (c)

(d) (e) (f)

Fig. 8. The training curves of PPO-C without balanced reward, normal PPO, and PPO-C with numerical inputs across different minibatch sizes and scenarios.
(a) The average reward curve with a minibatch size of 10 in scenario I. (b) The average reward curve with a minibatch size of 12 in scenario I. (c) The
average reward curve with a minibatch size of 15 in scenario I. (d) The average reward curve with a minibatch size of 10 in scenario II. (e) The average
reward curve with a minibatch size of 12 in scenario II. (f) The average reward curve with a minibatch size of 15 in scenario II.

A. Simulation Environmental Setup

The training and testing environment is Box2D, a widely
used open-source physics engine designed to simulate and an-
imate two-dimensional rigid-body dynamics [38]. In Box2D,
the racing car is modeled as a rigid body with connected
shapes, such as the chassis and wheels, resembling a real-
world car. Figure 7(a) shows the car model in Box2D, which
maintains a fixed distance between the body and tires, as
exemplified in Fig. 7(b). Box2D also supports local perception,
with cameras capturing images for the decision network,
as illustrated in Fig. 7(c). Additionally, Box2D realistically
models tire traction and body damping, considering car-track
interactions, as illustrated in Fig. 7(d). Tire traction varies
with the contact area, and damping influences stability, simu-
lating real-world conditions. Moreover, Box2D uses collision
filtering to manage collisions between the car and track
boundaries, enabling realistic suspension system simulations
and enhancing simulation fidelity.

B. Results and Analysis

1) Car Dynamics: In order to reduce the computing burden
of PPO-C, a bicycle model is used for the racing car in Box2D
[39]

ẋ = V cos(φ+ β) (31)

ẏ = V sin(φ+ β) (32)

φ̇ =
V

lr
sin(β) (33)

V̇ = a (34)

β = tan−1(
lr

lf + lr
tan(δf )) (35)

where x and y are the coordinates of car’s centre of mass. lr
is the length between the center of mass and car’s rear axle. lf
is the length between the center of mass and car’s front axle.
β is the angle of the velocity with respect to the longitudinal
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(a) (b) (c)

(d) (e) (f)

Fig. 9. The training curves of the PPO-C with γ from 0.01 to 0.04 across different minibathch sizes and scenarios. (a) The average reward curve with a
minibatch size of 10 in scenario I. (b) The average reward curve with a minibatch size of 12 in scenario I. (c) The average reward curve with a minibatch
size of 15 in scenario I. (d) The average reward curve with a minibatch size of 10 in scenario II. (e) The average reward curve with a minibatch size of 12
in scenario II. (f) The average reward curve with a minibatch size of 15 in scenario II.

axis of the car. ψ represents the yaw angle. a and δf are
chosen as the inputs. a is the car longitudinal acceleration

a = Fthrottle,maxuthrottle/M (36)

where Fthrottle,max and uthrottle are the maximum force of engine
and the input level of throttle gate, respectively. M is the mass
of the car. δf is the steering angle given by

δf = δmaxusteering (37)

where δmax is the maximum angle of steering and usteering is
the input of steering level. Therefore, the states of the car can
be changed by adjusting the inputs usteering and uthrottle . The
proposed algorithm is also applicable to the Ackerman model.

2) Scenario Description: During the training, the racing car
starts at the initial point and the race is considered finished
when it returns to the initial point. The car must avoid race-
track boundaries to ensure the safety, beginning with an initial
speed of 0 and aiming to reach the final point as quickly as
possible. This paper designs scenarios with varying degrees of
racing aggressiveness to evaluate performance across different
driving habits. The effectiveness of PPO-C is evaluated every
50 episodes. The car drives approximately 80 steps, typically
encountering at least 6 curvy sections per racetrack.

• Scenario I: The car faces irregular racetracks with mul-
tiple curvy sections, increasing the difficulty of avoiding
collisions. A penalty of 1 for efficiency at each step
represents normal driving.

• Scenario II: The car has a higher penalty for efficiency
of 1.5, demanding quicker completion during training,
representing aggressive driving. All other settings are the
same as in Scenario I.

Additionally, different minibatch sizes of 10, 12, and 15
are used to validate the effectiveness of PPO-C. Consistent

performance across various minibatch sizes demonstrates the
robustness of the algorithm, indicating its effectiveness is not
batch-size dependent, making the results more reliable.

3) Fast Convergence by using the Image-based Curiosity
Mechanism: Simulations are demonstrated in the training
curves of image-based PPO-C without balanced reward, stan-
dard image-based PPO, and numerical features-based PPO-C
across different minibatch sizes and scenarios. The numerical
inputs used as embedded features include position, steering,
and throttle openings. Fig. 8(a)-(f) plot the average reward
against the epoch, showcasing learning performance over time.

In Scenario I, Fig. 8(a) shows that with a minibatch size of
10, image-based PPO-C significantly outperforms both PPO
and numerical features-based PPO-C, achieving higher average
rewards more rapidly and maintaining superior performance
throughout training. Similarly, Fig. 8(b) and Fig. 8(c) depict
minibatch sizes of 12 and 15, respectively, where image-
based PPO-C achieves higher rewards earlier and consistently
outperforms both PPO and numerical features-based PPO-C.
In Scenario II, Fig. 8(d) with a minibatch size of 10 shows
image-based PPO-C maintaining its superior performance,
with higher average rewards across epochs. Figure 8(e) and
Fig. 8(f) with minibatch sizes of 12 and 15, respectively,
demonstrate that image-based PPO-C still outperforms both
PPO and numerical features-based PPO-C. The poor per-
formance of the numerical features-based PPO-C is due to
the limited capability of CNNs to process numerical data
effectively. Additionally, the numerical data can not reflect the
distance of the racing car from the grasslands, contributing to
the poor training results.

4) Reasoning Parameters of the Balanced Reward Func-
tion: Simulations are demonstrated in selecting the appro-
priate γ for a balanced reward function. To ensure sufficient
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(a) (b) (c)

(d) (e) (f)

Fig. 10. The training curves of the PPO-C with other bench mark algorithms across different minibathch sizes and scenarios. (a) The average reward curve
with a minibatch size of 10 in scenario I. (b) The average reward curve with a minibatch size of 12 in scenario I. (c) The average reward curve with a
minibatch size of 15 in scenario I. (d) The average reward curve with a minibatch size of 10 in scenario II. (e) The average reward curve with a minibatch
size of 12 in scenario II. (f) The average reward curve with a minibatch size of 15 in scenario II.

and convincing simulations, it is assumed that the historical
reward still constitutes the major portion of the total reward.
Therefore, in this paper, the minimum historical reward ratio
is set at around 0.8. Considering that racetracks typically
have approximately six corners in the Box2D environment,
we select the maximum γ = 0.04:

γ =
(1− historical reward)

number of corners
=

(1− 0.8)

6
= 0.036 ≈ 0.04

The other three candidate values for γ = 0.01, 0.02, and 0.03,
respectively. To verify the generalization of the most suitable
parameter for learning, three different minibatch sizes are
used: 10, 12, and 15. Additionally, to confirm the adaptability
of the best parameter across varied driving styles in racing,
two different scenarios are employed to determine the most
appropriate parameter.

Figure 9 displays the training curves of PPO-C with various
values of γ (ranging from 0.01 to 0.04) across different
minibatch sizes and scenarios. Figure 9(a) to Fig. 9(f) represent
the following conditions: Fig. 9(a) to Fig. 9(c) are simulation
results with minibatch sizes of 10, 12, and 15 in Scenario I,
respectively; Fig. 9(d) to Fig. 9(f) are simulation results with
minibatch sizes of 10, 12, and 15 in Scenario II, respectively.
Across all the test cases, there is a consistent trend of in-
creasing average rewards with the number of epochs, generally
stabilizing between 600 and 1000 epochs. Notably, the PPO-
C with γ = 0.03 tends to perform better across multiple
settings. Curves with γ = 0.03 consistently achieve higher
average scores and show more stability as training progresses.
For instance, in Fig. 9(a) and Fig. 9(d) with a minibatch
size of 10, curves with γ = 0.03 demonstrate superior
performance compared to other values. Similarly, in Fig. 9(b),
Fig. 9(c), Fig. 9(e), and Fig. 9(f) with larger minibatch sizes,
the curves with γ = 0.03 continue to outperform the others,

achieving higher scores and smoother trends. The variability
of the reward curves decreases with larger minibatch sizes,
showing smoother trends for minibatch sizes of 15 compared
to those of 10. Overall, γ = 0.03 is identified as the best-
performing configuration across the various scenarios and
minibatch sizes. Through comparisons with other benchmark
algorithms, γ = 0.03 will be applied.

5) Comparison of Training Curves among Different Bench-
mark Algorithms: Figure 10 displays the training curves of
PPO-C compared with other benchmark algorithms across
different minibatch sizes and scenarios. In Fig. 10(a) with a
minibatch size of 10 in Scenario I, the PPO-C outperforms
other algorithms consistently, achieving higher average scores
and demonstrating more stability, especially noticeable after
400 epochs. In Fig. 10(b) with a minibatch size of 12 in
Scenario I, the PPO-C shows superior performance, rising
more sharply and stabilizing at a higher average score. Figure
10(c) with a minibatch size of 15 in Scenario I shows the PPO-
C continuing to outperform other algorithms, achieving higher
average scores more quickly and maintaining steady improve-
ment. In Scenario II, Fig. 10(d) with a minibatch size of 10,
PPO-C remains the top performer, with its curve rising rapidly
and stabilizing at a higher level. Figure 10(e) with a minibatch
size of 12 in Scenario II shows PPO-C outperforming SAC,
PPO, and DDPG, achieving higher scores and showing less
variability. Finally, in Fig. 10(f) with a minibatch size of
15 in Scenario II, the PPO-C maintains its lead, achieving
higher average scores and exhibiting smoother trends. Overall,
the PPO-C consistently demonstrates superior performance
across various scenarios and minibatch sizes, achieving higher
average scores and showing more stability compared to SAC,
PPO, and DDPG, underscoring its robustness and adaptability
in different training conditions.
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Table II
AVERAGE LAPTIME AMONG 50 RACETRACKS

Laptime

PPO-C SAC PPO DDPG

Scenario I Minibatch 10 24.13 26.23 26.73 25.32
Minibatch 12 23.52 25.14 26.32 25.76
Minibatch 15 22.91 24.36 25.96 24.74

Scenario II Minibatch 10 23.93 24.12 25.33 24.76
Minibatch 12 22.26 23.88 24.74 24.56
Minibatch 15 22.44 22.56 23.77 24.25

Table III
AVERAGE NUMBER OF COLLISIONS AMONG 50 RACETRACKS

Number of Collisions

PPO-C SAC PPO DDPG

Scenario I Minibatch 10 0.54 1.26 2.16 2.86
Minibatch 12 0.46 0.82 1.72 2.76
Minibatch 15 0.42 0.56 1.66 2.74

Scenario II Minibatch 10 0.64 0.72 2.68 3.24
Minibatch 12 0.52 0.62 2.46 3.16
Minibatch 15 0.48 0.66 2.06 3.22

6) Evaluation of the Results: The PPO-C algorithm is
compared against three benchmark algorithms recently used in
racing, PPO, DDPG and SAC. Table II compares the laptime
of the PPO-C and other benchmark algorithms among 50
random racetracks across different racing conditions and mini-
batch sizes. In normal racing, PPO-C records the minimum
laptime of 24.13, 23.52, and 22.91 for Minibatch 10, 12, and
15 respectively. In Aggressive Racing, PPO-C continues to
lead with minimum number of collisions of 23.93, 22.26, and
22.44 for the same minibatch sizes. SAC remains competitive,
typically ranking second, while PPO and DDPG exhibit longer
laptime. These results highlight PPO-C’s superior capability in
minimizing the laptime, demonstrating its effectiveness in both
normal and aggressive racing scenarios.

Table III compares the number of collisions of the PPO-
C and other benchmark algorithms among 50 racetracks
across different racing conditions and minibatch sizes. PPO-
C achieves a minimum number of collisions of 0.54, 0.46,
and 0.42 for Minibatch 10, 12, and 15 respectively in normal
racing, and 0.64, 0.52, and 0.48 in aggressive racing. SAC
consistently ranks second in performance, followed by PPO
and DDPG with higher collision rates. These results suggest
that PPO-C excels in minimizing collisions across varying
racing dynamics and minibatch sizes.

Figure 11 illustrates how PPO-C and the other benchmark
algorithms react to dangerous bends in an example case. There
are five bends from A to E in this case. Bend A has a high
curvature, making it challenging to drive through. Bends B
and C are normal bends, requiring moderate control. Bends
D and E are close to each other, increasing the difficulty of

PPO-C PPO DDPG SAC

Fig. 11. Driving performance of using PPO-C, PPO, DDPG and SAC in an
Example Case.

steering. It can be seen that PPO-C demonstrates safer and
smarter driving than the other three algorithms, as it travels
within the boundaries and stays close to the inner side of the
curve when possible. In bend A, PPO deviates from the driving
area, causing a high safety loss. DDPG follows the outer and
middle side of the track, increasing its efficiency loss. SAC
drives along the inner track, decreasing the time consumption.
In bend B, DDPG also leaves the driving area, leading to a
high safety loss. In bends C and D, PPO-C stays in the center
of the track and drives along the track boundary, respectively,
balancing the safety and efficiency objectives. DDPG and SAC
move closer to the inner side of the track boundary, improving
their efficiency performance. Bends C and D suggest that
PPO-C is willing to sacrifice some efficiency profits to avoid
collisions. In bend E, both PPO and DDPG exit the driving
area, resulting in a high safety loss.

In Table IV, the comparison of average speed and average
lateral acceleration across five corners for different DRL
algorithms is illustrated. For average speed, PPO-C demon-
strates higher levels in four out of five corners compared to
SAC, PPO, and DDPG. This suggests that PPO-C adjusts its
speed effectively on straight sections before entering corners,
indicating a balanced approach that takes into account the con-
nection between straight sections and corners. Higher speeds
in straight sections can contribute to maintaining competitive
performance while ensuring stability during cornering, as
evidenced by PPO-C’s consistent higher speeds.

Regarding average lateral acceleration, PPO-C generally ex-
hibits lower acceleration levels in corners A to D compared to
other algorithms. Lower lateral acceleration indicates smoother
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 12. The driving performance and control levels of three sample autonomous racing cases. (a)-(c) are the trajectories of cases 1-3, respectively; (d)-(f)
are the steering angles of case 1-3, respectively; (g)-(i) are the throttle openings of cases 1-3, respectively.

and more stable driving, reflecting the ability of PPO-C to
make balanced decisions and maintain stability throughout the
track. Notably, corners D and E, being closely positioned,
highlight a strategy where acceleration is applied in the first
corner and deceleration in the subsequent one, optimizing
control and speed management through successive turns.

Conversely, DDPG shows lateral deceleration across most
corners, implying potentially higher speeds on straight sections
followed by necessary deceleration in corners to maintain
control. However, the high lateral acceleration in corner E
for DDPG suggests challenges in maintaining control within
the track boundaries, leading to instances where the vehicle
exceeds the driving area.

7) Driving Performance and Control Levels in Three Sam-
ple Cases: There are no shortcuts in the testing tracks, ensur-
ing the algorithm cannot exploit any contingencies. The testing
tracks feature sharp or multiple curves, increasing difficulty.
The racing car starts from the center of the starting point and
aims to reach the end point quickly. Figure 12 demonstrates
that the racing car follows a safe and efficient trajectory within
the feasible racetracks. Fig. 12(a) to Fig. 12(c) show the
trajectories of Case 1 through Case 3, respectively, with a color
bar indicating steering and throttle opening ranging from -1
to 1. Fig. 12(d) to Fig. 12(f) illustrate the steering angles of

Case 1 through Case 3, respectively, and Fig. 12(g) to Fig.
12(i) show the throttle openings for these cases.

In Fig. 12(a), the car deviates from the inner track boundary
to avoid collisions. In Fig. 12(b) and Fig. 12(c), the car
prefers the inner side of most curves to minimize lap time.
These results show that PPO-C effectively balances safety
and efficiency. Fig. 12(d) indicates that the car maintains its
steering within -0.2 to 0.2 on curvy roads without large bends.
In Fig. 12(e), the car exhibits both high steering around large
bends and minor adjustments around consecutive bends. In
Fig. 12(f), the car adjusts its steering angle more frequently
due to larger and more consecutive bends, preferring slight
steering on small bends and sharper steering on large bends.
Fig. 12(g) illustrates that the car briefly increases its throttle
opening when leaving curvy sections. In Fig. 12(h), the car
reduces its throttle opening when passing the second bend in a
series. In Fig. 12(i), the car changes its throttle more frequently
due to larger and more consecutive bends, maintaining a
throttle opening around 0.3 on straight roads. Thus, the throttle
control strategy involves steady acceleration on small bends
and more pronounced adjustments for a series of bends.

To illustrate the advantages of the proposed algorithm, this
paper benchmarked against recent studies in Table IV. The
DRL in [40] demonstrates enhanced training efficiency but
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Table IV
COMPARISON OF AVERAGE SPEED AND AVERAGE LATERAL

ACCELERATION IN 5 CORNERS

Metrics

PPO-C SAC PPO DDPG

Average Speed (m/s)

Corner A 20.69 19.23 17.23 18.86
Corner B 24.45 23.67 19.36 22.72
Corner C 30.67 32.98 26.46 28.23
Corner D 20.87 20.45 18.34 19.66
Corner E 15.99 15.56 14.65 9.43

Average Lateral Acceleration (m/s2)

Corner A 3.95 4.37 5.76 -2.23
Corner B 6.32 7.26 6.30 -4.22
Corner C 8.57 9.37 9.15 -0.28
Corner D 1.25 1.62 2.02 -5.32
Corner E -2.62 -2.21 -5.91 -7.38

Table V
COMPARISON AGAINST OTHER LEARNING-BASED METHODS

Methods LPR ITE SL RC SMRT VVCM

Salvaji et al. [40] -
√

- - - -
Spielberg et al. [41] -

√ √
-

√ √

Evans et al. [42] -
√ √ √ √ √

Ghignone et al. [43]
√

-
√

-
√

-
Proposed

√ √ √ √ √ √

Abbreviations: LPR: Local perception-based race; ITE: Improved training
efficiency; SL: Shorter laptime; RC: Reduced collisions; SMRT: Simulation
with multiple racetracks; VVCM: Visible variation of control commands; -:

not considered or not given.

overlooks other key factors, including reducing laptime, fewer
collisions, validating performance across multiple tracks, and
providing visualizations of control commands. On the other
hand, [41] introduces a DRL that encompasses improved
training efficiency, shorter laptime, validation across various
tracks, and clear visualization of control commands. However,
it overlooks the aspect of reducing collisions. In contrast, the
algorithms proposed in [42] considered all the factors in both
[40] and [41], but still heavily relies on global perception.
Furthermore, [43] focuses solely on local perception, empha-
sizing shorter laptime and validation across various tracks.
However, [43] neglects improvements in training efficiency,
collision reduction, and variations in control commands.

The proposed algorithm reduces dependency on sophisti-
cated equipment and achieves enhanced training efficiency.
Moreover, the laptime is reduced and collisions are avoided,
thereby the overall racing performance is improved. Further-
more, validations on multiple tracks have been made, while
interpretable control commands are provided, showcasing the
generalization and interpretability of the proposed algorithm.

VII. DISCUSSION

The PPO-C algorithm typically surpasses comparative
benchmarks by achieving greater training efficiency, higher
average rewards, collision avoidance, and reduced laptime.
Notably, while PPO-C approaches the highest training scores,
it remains approximately 100 points behind, indicating the
room for improvement. Future developments aim to narrow
this gap, ideally to within 50 points of the top score. Although
the PPO-C demonstrates proficiency in static environments, its
performance in dynamic settings requires further validation.
Additionally, there is potential to decrease laptime, as the
PPO-C has not yet completely optimized for inner track
navigation, as shown in Fig. 11. Before real-world application,
the PPO-C’s policy network and reward function must undergo
refinement and rigorous testing to ensure safety and reliability.
Moreover, prior to real-world implementation, a higher-fidelity
simulation environment will be utilized to bridge the gap
between simulation and actual conditions effectively.

VIII. CONCLUSION

This paper proposed a local perception-based, image-
efficient, and balanced reward-orientated PPO-C for au-
tonomous racing. The PPO-C aims to improve the training
efficiency and driving performance of the racing car. To en-
hance the attention to critic steps, a balanced reward function
is used to balance the historical and current rewards during
the training. To enhance safety in exploration, a curiosity
mechanism is introduced to focus on the dangerous racing
periods. The results demonstrate that as training time in-
creased, the proposed PPO-C improves its average scores with
a higher degree of safety. Comparisons among the PPO-C and
other three representative DRL algorithms were conducted,
showing that the proposed algorithm outperforms in terms
of no collision, shorter laptime, shorter training time, and
higher average rewards. In the future, extensive research will
be conducted in several aspects, including 1) verifying the
racing ability of PPO-C under more uncertain conditions, 2)
optimizing the racing process considering diverse objectives
such as riding comfort, and 3) extending the algorithm to team
competitions by using multiple agents.
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